1
0
Fork 0
mirror of https://github.com/ninjamuffin99/Funkin.git synced 2025-08-30 18:34:51 +00:00
Funkin/source/funkin/util/MathUtil.hx
2025-06-28 01:11:18 -05:00

258 lines
8.6 KiB
Haxe

package funkin.util;
/**
* Utilities for performing mathematical operations.
*/
@:nullSafety
class MathUtil
{
/**
* Euler's constant and the base of the natural logarithm.
* Math.E is not a constant in Haxe, so we'll just define it ourselves.
*/
public static final E:Float = 2.71828182845904523536;
/**
* Get the logarithm of a value with a given base.
* @param base The base of the logarithm.
* @param value The value to get the logarithm of.
* @return `log_base(value)`
*/
public static function logBase(base:Float, value:Float):Float
{
return Math.log(value) / Math.log(base);
}
public static function easeInOutCirc(x:Float):Float
{
if (x <= 0.0) return 0.0;
if (x >= 1.0) return 1.0;
var result:Float = (x < 0.5) ? (1 - Math.sqrt(1 - 4 * x * x)) / 2 : (Math.sqrt(1 - 4 * (1 - x) * (1 - x)) + 1) / 2;
return (result == Math.NaN) ? 1.0 : result;
}
public static function easeInOutBack(x:Float, c:Float = 1.70158):Float
{
if (x <= 0.0) return 0.0;
if (x >= 1.0) return 1.0;
var result:Float = (x < 0.5) ? (2 * x * x * ((c + 1) * 2 * x - c)) / 2 : (1 - 2 * (1 - x) * (1 - x) * ((c + 1) * 2 * (1 - x) - c)) / 2;
return (result == Math.NaN) ? 1.0 : result;
}
public static function easeInBack(x:Float, c:Float = 1.70158):Float
{
if (x <= 0.0) return 0.0;
if (x >= 1.0) return 1.0;
return (1 + c) * x * x * x - c * x * x;
}
public static function easeOutBack(x:Float, c:Float = 1.70158):Float
{
if (x <= 0.0) return 0.0;
if (x >= 1.0) return 1.0;
return 1 + (c + 1) * Math.pow(x - 1, 3) + c * Math.pow(x - 1, 2);
}
/**
* Get the base-2 exponent of a value.
* @param x value
* @return `2^x`
*/
public static function exp2(x:Float):Float
{
return Math.pow(2, x);
}
/**
* Performs a modulo operation to calculate the remainder of `a` divided by `b`.
*
* The definition of "remainder" varies by implementation;
* this one is similar to GLSL or Python in that it uses Euclidean division, which always returns positive,
* while Haxe's `%` operator uses signed truncated division.
*
* For example, `-5 % 3` returns `-2` while `FlxMath.mod(-5, 3)` returns `1`.
*
* @param a The dividend.
* @param b The divisor.
* @return `a mod b`.
*/
public static function mod(a:Float, b:Float):Float
{
b = Math.abs(b);
return a - b * Math.floor(a / b);
}
/**
* Helper function to get the fractional part of a value.
* @param x value
* @return `x mod 1`.
*/
public static function fract(x:Float):Float
{
return x - Math.floor(x);
}
/**
* Linear interpolation.
*
* @param base The starting value, when `alpha = 0`.
* @param target The ending value, when `alpha = 1`.
* @param alpha The percentage of the interpolation from `base` to `target`. Forms a "line" intersecting the two.
*
* @return The interpolated value.
*/
public static function lerp(base:Float, target:Float, alpha:Float):Float
{
if (alpha == 0) return base;
if (alpha == 1) return target;
return base + alpha * (target - base);
}
/**
* Exponential decay interpolation.
*
* Framerate-independent because the rate-of-change is proportional to the difference, so you can
* use the time elapsed since the last frame as `deltaTime` and the function will be consistent.
*
* Equivalent to `smoothLerpPrecision(base, target, deltaTime, halfLife, 0.5)`.
*
* @param base The starting or current value.
* @param target The value this function approaches.
* @param deltaTime The change in time along the function in seconds.
* @param halfLife Time in seconds to reach halfway to `target`.
*
* @see https://twitter.com/FreyaHolmer/status/1757918211679650262
*
* @return The interpolated value.
*/
public static function smoothLerpDecay(base:Float, target:Float, deltaTime:Float, halfLife:Float):Float
{
if (deltaTime == 0) return base;
if (base == target) return target;
return lerp(target, base, exp2(-deltaTime / halfLife));
}
/**
* Exponential decay interpolation.
*
* Framerate-independent because the rate-of-change is proportional to the difference, so you can
* use the time elapsed since the last frame as `deltaTime` and the function will be consistent.
*
* Equivalent to `smoothLerpDecay(base, target, deltaTime, -duration / logBase(2, precision))`.
*
* @param base The starting or current value.
* @param target The value this function approaches.
* @param deltaTime The change in time along the function in seconds.
* @param duration Time in seconds to reach `target` within `precision`, relative to the original distance.
* @param precision Relative target precision of the interpolation. Defaults to 1% distance remaining.
*
* @see https://twitter.com/FreyaHolmer/status/1757918211679650262
*
* @return The interpolated value.
*/
public static function smoothLerpPrecision(base:Float, target:Float, deltaTime:Float, duration:Float, precision:Float = 1 / 100):Float
{
if (deltaTime == 0) return base;
if (base == target) return target;
return lerp(target, base, Math.pow(precision, deltaTime / duration));
}
/**
* Snap a value to another if it's within a certain distance (inclusive).
*
* Helpful when using functions like `smoothLerpPrecision` to ensure the value actually reaches the target.
*
* @param base The base value to conditionally snap.
* @param target The target value to snap to.
* @param threshold Maximum distance between the two for snapping to occur.
*
* @return `target` if `base` is within `threshold` of it, otherwise `base`.
*/
public static function snap(base:Float, target:Float, threshold:Float):Float
{
return Math.abs(base - target) <= threshold ? target : base;
}
/**
* Perform linear interpolation between the base and the target, based on the current framerate.
* @param base The starting value, when `progress <= 0`.
* @param target The ending value, when `progress >= 1`.
* @param ratio Value used to interpolate between `base` and `target`.
*
* @return The interpolated value.
*/
@:deprecated('Use smoothLerpPrecision instead')
public static function coolLerp(base:Float, target:Float, ratio:Float):Float
{
return base + cameraLerp(ratio) * (target - base);
}
/**
* Perform linear interpolation based on the current framerate.
* @param lerp Value used to interpolate between `base` and `target`.
*
* @return The interpolated value.
*/
@:deprecated('Use smoothLerpPrecision instead')
public static function cameraLerp(lerp:Float):Float
{
return lerp * (FlxG.elapsed / (1 / 60));
}
/**
* Backwards compatibility for `smoothLerpPrecision`.
*
* Perform a framerate-independent linear interpolation between the base value and the target.
* @param current The current value.
* @param target The target value.
* @param elapsed The time elapsed since the last frame.
* @param duration The total duration of the interpolation. Nominal duration until remaining distance is less than `precision`.
* @param precision The target precision of the interpolation. Defaults to 1% of distance remaining.
* @see https://twitter.com/FreyaHolmer/status/1757918211679650262
*
* @return A value between the current value and the target value.
*/
@:deprecated('Use smoothLerpPrecision instead')
public static function smoothLerp(current:Float, target:Float, elapsed:Float, duration:Float, precision:Float = 1 / 100):Float
{
// An alternative algorithm which uses a separate half-life value:
// var halfLife:Float = -duration / logBase(2, precision);
// lerp(current, target, 1 - exp2(-elapsed / halfLife));
if (current == target) return target;
var result:Float = lerp(current, target, 1 - Math.pow(precision, elapsed / duration));
// TODO: Is there a better way to ensure a lerp which actually reaches the target?
// Research a framerate-independent PID lerp.
if (Math.abs(result - target) < (precision * target)) result = target;
return result;
}
/**
* GCD stands for Greatest Common Divisor
* It's used in FullScreenScaleMode to prevent weird window resolutions from being counted as wide screen since those were causing issues positioning the game
* It returns the greatest common divisor between m and n
*
* think it's from hxp..?
* @param m
* @param n
* @return Int the common divisor between m and n
*/
public static function gcd(m:Int, n:Int):Int
{
m = Math.floor(Math.abs(m));
n = Math.floor(Math.abs(n));
var t;
do
{
if (n == 0) return m;
t = m;
m = n;
n = t % m;
}
while (true);
}
}