package funkin.util; /** * Utilities for performing mathematical operations. */ @:nullSafety class MathUtil { /** * Euler's constant and the base of the natural logarithm. * Math.E is not a constant in Haxe, so we'll just define it ourselves. */ public static final E:Float = 2.71828182845904523536; /** * Get the logarithm of a value with a given base. * @param base The base of the logarithm. * @param value The value to get the logarithm of. * @return `log_base(value)` */ public static function logBase(base:Float, value:Float):Float { return Math.log(value) / Math.log(base); } public static function easeInOutCirc(x:Float):Float { if (x <= 0.0) return 0.0; if (x >= 1.0) return 1.0; var result:Float = (x < 0.5) ? (1 - Math.sqrt(1 - 4 * x * x)) / 2 : (Math.sqrt(1 - 4 * (1 - x) * (1 - x)) + 1) / 2; return (result == Math.NaN) ? 1.0 : result; } public static function easeInOutBack(x:Float, c:Float = 1.70158):Float { if (x <= 0.0) return 0.0; if (x >= 1.0) return 1.0; var result:Float = (x < 0.5) ? (2 * x * x * ((c + 1) * 2 * x - c)) / 2 : (1 - 2 * (1 - x) * (1 - x) * ((c + 1) * 2 * (1 - x) - c)) / 2; return (result == Math.NaN) ? 1.0 : result; } public static function easeInBack(x:Float, c:Float = 1.70158):Float { if (x <= 0.0) return 0.0; if (x >= 1.0) return 1.0; return (1 + c) * x * x * x - c * x * x; } public static function easeOutBack(x:Float, c:Float = 1.70158):Float { if (x <= 0.0) return 0.0; if (x >= 1.0) return 1.0; return 1 + (c + 1) * Math.pow(x - 1, 3) + c * Math.pow(x - 1, 2); } /** * Get the base-2 exponent of a value. * @param x value * @return `2^x` */ public static function exp2(x:Float):Float { return Math.pow(2, x); } /** * Performs a modulo operation to calculate the remainder of `a` divided by `b`. * * The definition of "remainder" varies by implementation; * this one is similar to GLSL or Python in that it uses Euclidean division, which always returns positive, * while Haxe's `%` operator uses signed truncated division. * * For example, `-5 % 3` returns `-2` while `FlxMath.mod(-5, 3)` returns `1`. * * @param a The dividend. * @param b The divisor. * @return `a mod b`. */ public static function mod(a:Float, b:Float):Float { b = Math.abs(b); return a - b * Math.floor(a / b); } /** * Helper function to get the fractional part of a value. * @param x value * @return `x mod 1`. */ public static function fract(x:Float):Float { return x - Math.floor(x); } /** * Linear interpolation. * * @param base The starting value, when `alpha = 0`. * @param target The ending value, when `alpha = 1`. * @param alpha The percentage of the interpolation from `base` to `target`. Forms a "line" intersecting the two. * * @return The interpolated value. */ public static function lerp(base:Float, target:Float, alpha:Float):Float { if (alpha == 0) return base; if (alpha == 1) return target; return base + alpha * (target - base); } /** * Exponential decay interpolation. * * Framerate-independent because the rate-of-change is proportional to the difference, so you can * use the time elapsed since the last frame as `deltaTime` and the function will be consistent. * * Equivalent to `smoothLerpPrecision(base, target, deltaTime, halfLife, 0.5)`. * * @param base The starting or current value. * @param target The value this function approaches. * @param deltaTime The change in time along the function in seconds. * @param halfLife Time in seconds to reach halfway to `target`. * * @see https://twitter.com/FreyaHolmer/status/1757918211679650262 * * @return The interpolated value. */ public static function smoothLerpDecay(base:Float, target:Float, deltaTime:Float, halfLife:Float):Float { if (deltaTime == 0) return base; if (base == target) return target; return lerp(target, base, exp2(-deltaTime / halfLife)); } /** * Exponential decay interpolation. * * Framerate-independent because the rate-of-change is proportional to the difference, so you can * use the time elapsed since the last frame as `deltaTime` and the function will be consistent. * * Equivalent to `smoothLerpDecay(base, target, deltaTime, -duration / logBase(2, precision))`. * * @param base The starting or current value. * @param target The value this function approaches. * @param deltaTime The change in time along the function in seconds. * @param duration Time in seconds to reach `target` within `precision`, relative to the original distance. * @param precision Relative target precision of the interpolation. Defaults to 1% distance remaining. * * @see https://twitter.com/FreyaHolmer/status/1757918211679650262 * * @return The interpolated value. */ public static function smoothLerpPrecision(base:Float, target:Float, deltaTime:Float, duration:Float, precision:Float = 1 / 100):Float { if (deltaTime == 0) return base; if (base == target) return target; return lerp(target, base, Math.pow(precision, deltaTime / duration)); } /** * Snap a value to another if it's within a certain distance (inclusive). * * Helpful when using functions like `smoothLerpPrecision` to ensure the value actually reaches the target. * * @param base The base value to conditionally snap. * @param target The target value to snap to. * @param threshold Maximum distance between the two for snapping to occur. * * @return `target` if `base` is within `threshold` of it, otherwise `base`. */ public static function snap(base:Float, target:Float, threshold:Float):Float { return Math.abs(base - target) <= threshold ? target : base; } /** * Perform linear interpolation between the base and the target, based on the current framerate. * @param base The starting value, when `progress <= 0`. * @param target The ending value, when `progress >= 1`. * @param ratio Value used to interpolate between `base` and `target`. * * @return The interpolated value. */ @:deprecated('Use smoothLerpPrecision instead') public static function coolLerp(base:Float, target:Float, ratio:Float):Float { return base + cameraLerp(ratio) * (target - base); } /** * Perform linear interpolation based on the current framerate. * @param lerp Value used to interpolate between `base` and `target`. * * @return The interpolated value. */ @:deprecated('Use smoothLerpPrecision instead') public static function cameraLerp(lerp:Float):Float { return lerp * (FlxG.elapsed / (1 / 60)); } /** * Backwards compatibility for `smoothLerpPrecision`. * * Perform a framerate-independent linear interpolation between the base value and the target. * @param current The current value. * @param target The target value. * @param elapsed The time elapsed since the last frame. * @param duration The total duration of the interpolation. Nominal duration until remaining distance is less than `precision`. * @param precision The target precision of the interpolation. Defaults to 1% of distance remaining. * @see https://twitter.com/FreyaHolmer/status/1757918211679650262 * * @return A value between the current value and the target value. */ @:deprecated('Use smoothLerpPrecision instead') public static function smoothLerp(current:Float, target:Float, elapsed:Float, duration:Float, precision:Float = 1 / 100):Float { // An alternative algorithm which uses a separate half-life value: // var halfLife:Float = -duration / logBase(2, precision); // lerp(current, target, 1 - exp2(-elapsed / halfLife)); if (current == target) return target; var result:Float = lerp(current, target, 1 - Math.pow(precision, elapsed / duration)); // TODO: Is there a better way to ensure a lerp which actually reaches the target? // Research a framerate-independent PID lerp. if (Math.abs(result - target) < (precision * target)) result = target; return result; } /** * GCD stands for Greatest Common Divisor * It's used in FullScreenScaleMode to prevent weird window resolutions from being counted as wide screen since those were causing issues positioning the game * It returns the greatest common divisor between m and n * * think it's from hxp..? * @param m * @param n * @return Int the common divisor between m and n */ public static function gcd(m:Int, n:Int):Int { m = Math.floor(Math.abs(m)); n = Math.floor(Math.abs(n)); var t; do { if (n == 0) return m; t = m; m = n; n = t % m; } while (true); } }