symmetries/Cubical/Structures/Set/CMon/PList.agda

116 lines
5.2 KiB
Agda
Raw Permalink Normal View History

2024-03-11 18:20:28 +00:00
{-# OPTIONS --cubical --safe --exact-split #-}
Definition taken from https://drops.dagstuhl.de/opus/volltexte/2023/18395/pdf/LIPIcs-ITP-2023-20.pdf
module Cubical.Structures.Set.CMon.PList where
open import Cubical.Core.Everything
open import Cubical.Foundations.Everything
open import Cubical.Data.List as L
import Cubical.Structures.Set.Mon.Desc as M
import Cubical.Structures.Set.Mon.List as LM
import Cubical.Structures.Set.CMon.Desc as M
import Cubical.Structures.Free as F
open import Cubical.Structures.Sig
open import Cubical.Structures.Str public
open import Cubical.Structures.Tree
open import Cubical.Structures.Eq
open import Cubical.Structures.Arity hiding (_/_)
open import Cubical.Structures.Set.CMon.QFreeMon
data Perm { : Level} {A : Type } : List A -> List A -> Type where
perm-refl : {xs} -> Perm xs xs
perm-swap : {x y xs ys zs} -> Perm (xs ++ x y ys) zs -> Perm (xs ++ y x ys) zs
private
variable
ℓ₁ ℓ₂ : Level
A B : Type
infixr 30 _∙ₚ_
_∙ₚ_ : {xs ys zs} -> Perm xs ys -> Perm ys zs -> Perm {A = A} xs zs
perm-refl ∙ₚ q = q
(perm-swap p) ∙ₚ q = perm-swap (p ∙ₚ q)
perm-sym : {xs ys} -> Perm xs ys -> Perm {A = A} ys xs
perm-sym perm-refl = perm-refl
perm-sym (perm-swap p) = perm-sym p ∙ₚ perm-swap perm-refl
perm-subst : {xs ys} -> xs ys -> Perm {A = A} xs ys
perm-subst {xs = xs} p = subst (Perm xs) p perm-refl
perm-∷ : {x xs ys} -> Perm xs ys -> Perm {A = A} (x xs) (x ys)
perm-∷ perm-refl = perm-refl
perm-∷ {x = x} (perm-swap {xs = xs} p) = perm-swap {xs = x xs} (perm-∷ p)
perm-prepend : (xs : List A) {ys zs : List A} -> Perm ys zs -> Perm (xs ++ ys) (xs ++ zs)
perm-prepend [] p = p
perm-prepend (x xs) p = perm-∷ (perm-prepend xs p)
perm-append : {xs ys} -> Perm xs ys -> (zs : List A) -> Perm (xs ++ zs) (ys ++ zs)
perm-append perm-refl _ = perm-refl
perm-append (perm-swap {xs = xs} p) _ =
perm-subst (++-assoc xs _ _) ∙ₚ perm-swap (perm-subst (sym (++-assoc xs _ _)) ∙ₚ perm-append p _)
perm-movehead : (x : A) (xs : List A) {ys : List A} -> Perm (x xs ++ ys) (xs ++ x ys)
perm-movehead x [] = perm-refl
perm-movehead x (y xs) = perm-swap {xs = []} (perm-∷ (perm-movehead x xs))
⊕-commₚ : (xs ys : List A) -> Perm (xs ++ ys) (ys ++ xs)
⊕-commₚ xs [] = perm-subst (++-unit-r xs)
⊕-commₚ xs (y ys) = perm-sym (perm-movehead y xs {ys = ys}) ∙ₚ perm-∷ (⊕-commₚ xs ys)
module _ {A B} {A : Type A} {𝔜 : struct B M.MonSig} {isSet𝔜 : isSet (𝔜 .car)} (𝔜-cmon : 𝔜 M.CMonSEq) (f : A -> 𝔜 .car) where
module 𝔜 = M.CMonSEq 𝔜 𝔜-cmon
f♯-hom = LM.Free.♯-isMonHom isSet𝔜 (M.cmonSatMon 𝔜-cmon) f
f♯ : List A -> 𝔜 .car
f♯ = f♯-hom .fst
f♯-++ : xs ys -> f♯ (xs ++ ys) f♯ xs 𝔜.⊕ f♯ ys
f♯-++ xs ys =
f♯ (xs ++ ys) ≡⟨ sym ((f♯-hom .snd) M.`⊕ (lookup (xs ys [])))
𝔜 .alg (M.`⊕ , (λ w -> f♯ (lookup (xs ys []) w))) ≡⟨ 𝔜.⊕-eta (lookup (xs ys [])) f♯
_
f♯-swap : {x y : A} (xs ys : List A) -> f♯ (xs ++ x y ys) f♯ (xs ++ y x ys)
f♯-swap {x} {y} [] ys =
f♯ ((L.[ x ] ++ L.[ y ]) ++ ys) ≡⟨ f♯-++ (L.[ x ] ++ L.[ y ]) ys
f♯ (L.[ x ] ++ L.[ y ]) 𝔜.⊕ f♯ ys ≡⟨ cong (𝔜._⊕ f♯ ys) (f♯-++ L.[ x ] L.[ y ])
(f♯ L.[ x ] 𝔜.⊕ f♯ L.[ y ]) 𝔜.⊕ f♯ ys ≡⟨ cong (𝔜._⊕ f♯ ys) (𝔜.comm _ _)
(f♯ L.[ y ] 𝔜.⊕ f♯ L.[ x ]) 𝔜.⊕ f♯ ys ≡⟨ cong (𝔜._⊕ f♯ ys) (sym (f♯-++ L.[ y ] L.[ x ]))
f♯ (L.[ y ] ++ L.[ x ]) 𝔜.⊕ f♯ ys ≡⟨ sym (f♯-++ (L.[ y ] ++ L.[ x ]) ys)
f♯ ((L.[ y ] ++ L.[ x ]) ++ ys)
f♯-swap {x} {y} (a as) ys =
f♯ (L.[ a ] ++ (as ++ x y ys)) ≡⟨ f♯-++ L.[ a ] (as ++ x y ys)
f♯ L.[ a ] 𝔜.⊕ f♯ (as ++ x y ys) ≡⟨ cong (f♯ L.[ a ] 𝔜.⊕_) (f♯-swap as ys)
f♯ L.[ a ] 𝔜.⊕ f♯ (as ++ y x ys) ≡⟨ sym (f♯-++ L.[ a ] (as ++ y x ys))
f♯ (L.[ a ] ++ (as ++ y x ys)) ≡⟨⟩
f♯ ((a as) ++ y x ys)
perm-resp-f♯ : {a b : List A} -> Perm a b -> f♯ a f♯ b
perm-resp-f♯ perm-refl = refl
perm-resp-f♯ (perm-swap {xs = xs} {ys = ys} p) = f♯-swap xs ys perm-resp-f♯ p
module _ {} (A : Type ) where
open import Cubical.Relation.Binary
module P = BinaryRelation {A = List A} Perm
open isPermRel
isPermRelPerm : isPermRel LM.listDef (Perm {A = A})
P.isEquivRel.reflexive (isEquivRel isPermRelPerm) _ = perm-refl
P.isEquivRel.symmetric (isEquivRel isPermRelPerm) _ _ = perm-sym
P.isEquivRel.transitive (isEquivRel isPermRelPerm) _ _ _ = _∙ₚ_
isCongruence isPermRelPerm {a} {b} {c} {d} p q = perm-prepend a q ∙ₚ perm-append p d
isCommutative isPermRelPerm {a} {b} = ⊕-commₚ a b
resp-♯ isPermRelPerm {isSet𝔜 = isSet𝔜} 𝔜-cmon f p = perm-resp-f♯ {isSet𝔜 = isSet𝔜} 𝔜-cmon f p
PermRel : PermRelation LM.listDef A
PermRel = Perm , isPermRelPerm
module PListDef = F.Definition M.MonSig M.CMonEqSig M.CMonSEq
plistFreeDef : {} -> PListDef.Free 2
plistFreeDef = qFreeMonDef (PermRel _)