doukutsu-rs/src/common.rs

534 lines
16 KiB
Rust

use std::cmp::Ordering;
use std::fmt;
use lazy_static::lazy_static;
use num_traits::{abs, Num};
use serde::{de, Deserialize, Deserializer, Serialize, Serializer};
use serde::de::{SeqAccess, Visitor};
use serde::ser::SerializeTupleStruct;
use crate::bitfield;
/// Multiply cave story degrees (0-255, which corresponds to 0°-360°) with this to get
/// respective value in radians.
pub const CDEG_RAD: f64 = std::f64::consts::PI / 128.0;
lazy_static! {
pub static ref VERSION_BANNER: String = {
let version = option_env!("DRS_BUILD_VERSION_OVERRIDE").unwrap_or(env!("CARGO_PKG_VERSION"));
format!("doukutsu-rs {}", version)
};
}
bitfield! {
#[derive(Clone, Copy)]
#[repr(C)]
pub struct Flag(u32);
impl Debug;
/// Set if left wall was hit. (corresponds to flag & 0x01)
pub hit_left_wall, set_hit_left_wall: 0;
/// Set if top wall was hit. (corresponds to flag & 0x02)
pub hit_top_wall, set_hit_top_wall: 1;
/// Set if right wall was hit. (corresponds to flag & 0x04)
pub hit_right_wall, set_hit_right_wall: 2;
/// Set if bottom wall was hit. (corresponds to flag & 0x08)
pub hit_bottom_wall, set_hit_bottom_wall: 3;
/// Set if entity stays on right slope. (corresponds to flag & 0x10)
pub hit_right_slope, set_hit_right_slope: 4;
/// Set if entity stays on left slope. (corresponds to flag & 0x20)
pub hit_left_slope, set_hit_left_slope: 5;
/// Unknown purpose (corresponds to flag & 0x40)
pub flag_x40, set_flag_x40: 6;
/// Unknown purpose (corresponds to flag & 0x80)
pub flag_x80, set_flag_x80: 7;
/// Set if entity is in water. (corresponds to flag & 0x100)
pub in_water, set_in_water: 8;
pub weapon_hit_block, set_weapon_hit_block: 9; // 0x200
pub hit_by_spike, set_hit_by_spike: 10; // 0x400
pub water_splash_facing_right, set_water_splash_facing_right: 11; // 0x800
pub force_left, set_force_left: 12; // 0x1000
pub force_up, set_force_up: 13; // 0x2000
pub force_right, set_force_right: 14; // 0x4000
pub force_down, set_force_down: 15; // 0x8000
pub hit_left_bigger_half, set_hit_left_bigger_half: 16; // 0x10000
pub hit_left_smaller_half, set_hit_left_smaller_half: 17; // 0x20000
pub hit_right_smaller_half, set_hit_right_smaller_half: 18; // 0x40000
pub hit_right_bigger_half, set_hit_right_bigger_half: 19; // 0x80000
}
impl Flag {
pub fn hit_anything(&self) -> bool {
(self.0 & 0x2ff) != 0
}
}
bitfield! {
#[derive(Clone, Copy)]
#[repr(C)]
pub struct Equipment(u16);
impl Debug;
pub has_booster_0_8, set_booster_0_8: 0; // 0x01 / 0001
pub has_map, set_map: 1; // 0x02 / 0002
pub has_arms_barrier, set_arms_barrier: 2; // 0x04 / 0004
pub has_turbocharge, set_turbocharge: 3; // 0x08 / 0008
pub has_air_tank, set_air_tank: 4; // 0x10 / 0016
pub has_booster_2_0, set_booster_2_0: 5; // 0x20 / 0032
pub has_mimiga_mask, set_mimiga_mask: 6; // 0x40 / 0064
pub has_whimsical_star, set_whimsical_star: 7; // 0x080 / 0128
pub has_nikumaru, set_nikumaru: 8; // 0x100 / 0256
// for custom equips
pub unused_1, set_unused_1: 9; // 0x200 / 0512
pub unused_2, set_unused_2: 10; // 0x400 / 1024
pub unused_3, set_unused_3: 11; // 0x800 / 2048
pub unused_4, set_unused_4: 12; // 0x1000 / 4096
pub unused_5, set_unused_5: 13; // 0x2000 / 8192
// bit 14 and 15 aren't accessible via TSC without abusing overflows (won't work in strict mode)
pub unused_6, set_unused_6: 14; // 0x4000 / @384
pub unused_7, set_unused_7: 15; // 0x8000 / P768
}
bitfield! {
#[derive(Clone, Copy)]
#[repr(C)]
pub struct Condition(u16);
impl Debug;
pub interacted, set_interacted: 0; // 0x01
pub hidden, set_hidden: 1; // 0x02
pub fallen, set_fallen: 2; // 0x04
pub explode_die, set_explode_die: 3; // 0x08
pub damage_boss, set_damage_boss: 4; // 0x10
pub increase_acceleration, set_increase_acceleration: 5; // 0x20
pub cond_x40, set_cond_x40: 6; // 0x40
pub alive, set_alive: 7; // 0x80
// engine specific flags
pub drs_boss, set_drs_boss: 15;
}
bitfield! {
#[derive(Clone, Copy, Serialize, Deserialize)]
#[repr(C)]
pub struct ControlFlags(u16);
impl Debug;
pub tick_world, set_tick_world: 0; // 0x01
pub control_enabled, set_control_enabled: 1; // 0x02
pub interactions_disabled, set_interactions_disabled: 2; // 0x04
pub credits_running, set_credits_running: 3; // 0x08
// engine specific flags
pub friendly_fire, set_friendly_fire: 14;
pub wind, set_wind: 15;
}
bitfield! {
#[derive(Clone, Copy)]
#[repr(C)]
pub struct BulletFlag(u16);
impl Debug;
pub flag_x01, set_flag_x01: 0; // 0x01
pub flag_x02, set_flag_x02: 1; // 0x02
pub flag_x04, set_flag_x04: 2; // 0x04
pub flag_x08, set_flag_x08: 3; // 0x08
pub flag_x10, set_flag_x10: 4; // 0x10
pub flag_x20, set_flag_x20: 5; // 0x20
pub flag_x40, set_flag_x40: 6; // 0x40
pub flag_x80, set_flag_x80: 7; // 0x80
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u8)]
pub enum FadeDirection {
Left = 0,
Up,
Right,
Down,
Center,
}
impl FadeDirection {
pub fn from_int(val: usize) -> Option<FadeDirection> {
match val {
0 => { Some(FadeDirection::Left) }
1 => { Some(FadeDirection::Up) }
2 => { Some(FadeDirection::Right) }
3 => { Some(FadeDirection::Down) }
4 => { Some(FadeDirection::Center) }
_ => { None }
}
}
pub fn opposite(&self) -> FadeDirection {
match self {
FadeDirection::Left => { FadeDirection::Right }
FadeDirection::Up => { FadeDirection::Down }
FadeDirection::Right => { FadeDirection::Left }
FadeDirection::Down => { FadeDirection::Up }
FadeDirection::Center => { FadeDirection::Center }
}
}
}
#[derive(Debug, PartialEq, Copy, Clone)]
#[repr(u8)]
pub enum FadeState {
Visible,
FadeIn(i8, FadeDirection),
Hidden,
FadeOut(i8, FadeDirection),
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u8)]
pub enum Direction {
Left = 0,
Up,
Right,
Bottom,
FacingPlayer,
}
pub const FILE_TYPES: [&str; 3] = [".png", ".bmp", ".pbm"];
impl Direction {
pub fn from_int(val: usize) -> Option<Direction> {
match val {
0 => { Some(Direction::Left) }
1 => { Some(Direction::Up) }
2 => { Some(Direction::Right) }
3 => { Some(Direction::Bottom) }
_ => { None }
}
}
pub fn from_int_facing(val: usize) -> Option<Direction> {
match val {
0 => { Some(Direction::Left) }
1 => { Some(Direction::Up) }
2 => { Some(Direction::Right) }
3 => { Some(Direction::Bottom) }
4 => { Some(Direction::FacingPlayer) }
_ => { None }
}
}
pub fn opposite(&self) -> Direction {
match self {
Direction::Left => { Direction::Right }
Direction::Up => { Direction::Bottom }
Direction::Right => { Direction::Left }
Direction::Bottom => { Direction::Up }
Direction::FacingPlayer => unreachable!(),
}
}
pub fn vector_x(&self) -> i32 {
match self {
Direction::Left => { -1 }
Direction::Up => { 0 }
Direction::Right => { 1 }
Direction::Bottom => { 0 }
Direction::FacingPlayer => unreachable!(),
}
}
pub fn vector_y(&self) -> i32 {
match self {
Direction::Left => { 0 }
Direction::Up => { -1 }
Direction::Right => { 0 }
Direction::Bottom => { 1 }
Direction::FacingPlayer => unreachable!(),
}
}
}
#[derive(Debug, Clone, Copy)]
pub struct Point<T: Num + PartialOrd + Copy = isize> {
pub x: T,
pub y: T,
}
impl<T: Num + PartialOrd + Copy> Point<T> {
#[inline(always)]
pub fn new(x: T, y: T) -> Point<T> {
Point {
x,
y,
}
}
}
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct Rect<T: Num + PartialOrd + Copy = isize> {
pub left: T,
pub top: T,
pub right: T,
pub bottom: T,
}
impl<T: Num + PartialOrd + Copy> Rect<T> {
#[inline(always)]
pub fn new(left: T, top: T, right: T, bottom: T) -> Rect<T> {
Rect {
left,
top,
right,
bottom,
}
}
#[inline(always)]
pub fn new_size(x: T, y: T, width: T, height: T) -> Rect<T> {
Rect {
left: x,
top: y,
right: x.add(width),
bottom: y.add(height),
}
}
pub fn width(&self) -> T {
if let Some(Ordering::Greater) = self.left.partial_cmp(&self.right) {
self.left.sub(self.right)
} else {
self.right.sub(self.left)
}
}
pub fn height(&self) -> T {
if let Some(Ordering::Greater) = self.top.partial_cmp(&self.bottom) {
self.top.sub(self.bottom)
} else {
self.bottom.sub(self.top)
}
}
}
impl<T: Num + PartialOrd + Copy + Serialize> Serialize for Rect<T> {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let mut state = serializer.serialize_tuple_struct("Rect", 4)?;
state.serialize_field(&self.left)?;
state.serialize_field(&self.top)?;
state.serialize_field(&self.right)?;
state.serialize_field(&self.bottom)?;
state.end()
}
}
macro_rules! rect_deserialze {
($num_type: ident) => {
impl<'de> Deserialize<'de> for Rect<$num_type> {
fn deserialize<D>(deserializer: D) -> Result<Rect<$num_type>, D::Error>
where
D: Deserializer<'de>,
{
struct RectVisitor;
impl<'de> Visitor<'de> for RectVisitor {
type Value = Rect<$num_type>;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("Expected Rect structure.")
}
fn visit_seq<V>(self, mut seq: V) -> Result<Self::Value, V::Error>
where
V: SeqAccess<'de>
{
let invalid_length = || {
de::Error::invalid_length(0, &self)
};
let left = seq.next_element()?.ok_or_else(invalid_length)?;
let top = seq.next_element()?.ok_or_else(invalid_length)?;
let right = seq.next_element()?.ok_or_else(invalid_length)?;
let bottom = seq.next_element()?.ok_or_else(invalid_length)?;
Ok(Rect { left, top, right, bottom })
}
}
deserializer.deserialize_tuple_struct("Rect", 4, RectVisitor)
}
}
};
}
rect_deserialze!(u8);
rect_deserialze!(u16);
rect_deserialze!(i32);
rect_deserialze!(isize);
rect_deserialze!(usize);
#[inline(always)]
pub fn fix9_scale(val: i32, scale: f32) -> f32 {
(val as f64 * scale as f64 / 512.0).floor() as f32 / scale
}
#[inline(always)]
fn lerp_f64(v1: f64, v2: f64, t: f64) -> f64 {
v1 * (1.0 - t) + v2 * t
}
pub fn interpolate_fix9_scale(old_val: i32, val: i32, frame_delta: f64) -> f32 {
if abs(old_val - val) > 8 * 0x200 {
return val as f32 / 512.0;
}
(lerp_f64(old_val as f64, val as f64, frame_delta) / 512.0) as f32
}
/// A RGBA color in the `sRGB` color space represented as `f32`'s in the range `[0.0-1.0]`
///
/// For convenience, [`WHITE`](constant.WHITE.html) and [`BLACK`](constant.BLACK.html) are provided.
#[derive(Copy, Clone, PartialEq, Debug, Serialize, Deserialize)]
pub struct Color {
/// Red component
pub r: f32,
/// Green component
pub g: f32,
/// Blue component
pub b: f32,
/// Alpha component
pub a: f32,
}
impl Color {
/// Create a new `Color` from four `f32`'s in the range `[0.0-1.0]`
pub const fn new(r: f32, g: f32, b: f32, a: f32) -> Self {
Color { r, g, b, a }
}
/// Create a new `Color` from four `u8`'s in the range `[0-255]`
pub fn from_rgba(r: u8, g: u8, b: u8, a: u8) -> Color {
Color::from((r, g, b, a))
}
/// Create a new `Color` from three u8's in the range `[0-255]`,
/// with the alpha component fixed to 255 (opaque)
pub fn from_rgb(r: u8, g: u8, b: u8) -> Color {
Color::from((r, g, b))
}
/// Return a tuple of four `u8`'s in the range `[0-255]` with the `Color`'s
/// components.
pub fn to_rgba(self) -> (u8, u8, u8, u8) {
self.into()
}
/// Return a tuple of three `u8`'s in the range `[0-255]` with the `Color`'s
/// components.
pub fn to_rgb(self) -> (u8, u8, u8) {
self.into()
}
/// Convert a packed `u32` containing `0xRRGGBBAA` into a `Color`
pub fn from_rgba_u32(c: u32) -> Color {
let c = c.to_be_bytes();
Color::from((c[0], c[1], c[2], c[3]))
}
/// Convert a packed `u32` containing `0x00RRGGBB` into a `Color`.
/// This lets you do things like `Color::from_rgb_u32(0xCD09AA)` easily if you want.
pub fn from_rgb_u32(c: u32) -> Color {
let c = c.to_be_bytes();
Color::from((c[1], c[2], c[3]))
}
/// Convert a `Color` into a packed `u32`, containing `0xRRGGBBAA` as bytes.
pub fn to_rgba_u32(self) -> u32 {
let (r, g, b, a): (u8, u8, u8, u8) = self.into();
u32::from_be_bytes([r, g, b, a])
}
/// Convert a `Color` into a packed `u32`, containing `0x00RRGGBB` as bytes.
pub fn to_rgb_u32(self) -> u32 {
let (r, g, b, _a): (u8, u8, u8, u8) = self.into();
u32::from_be_bytes([0, r, g, b])
}
}
impl From<(u8, u8, u8, u8)> for Color {
/// Convert a `(R, G, B, A)` tuple of `u8`'s in the range `[0-255]` into a `Color`
fn from(val: (u8, u8, u8, u8)) -> Self {
let (r, g, b, a) = val;
let rf = (f32::from(r)) / 255.0;
let gf = (f32::from(g)) / 255.0;
let bf = (f32::from(b)) / 255.0;
let af = (f32::from(a)) / 255.0;
Color::new(rf, gf, bf, af)
}
}
impl From<(u8, u8, u8)> for Color {
/// Convert a `(R, G, B)` tuple of `u8`'s in the range `[0-255]` into a `Color`,
/// with a value of 255 for the alpha element (i.e., no transparency.)
fn from(val: (u8, u8, u8)) -> Self {
let (r, g, b) = val;
Color::from((r, g, b, 255))
}
}
impl From<[f32; 4]> for Color {
/// Turns an `[R, G, B, A] array of `f32`'s into a `Color` with no format changes.
/// All inputs should be in the range `[0.0-1.0]`.
fn from(val: [f32; 4]) -> Self {
Color::new(val[0], val[1], val[2], val[3])
}
}
impl From<(f32, f32, f32)> for Color {
/// Convert a `(R, G, B)` tuple of `f32`'s in the range `[0.0-1.0]` into a `Color`,
/// with a value of 1.0 to for the alpha element (ie, no transparency.)
fn from(val: (f32, f32, f32)) -> Self {
let (r, g, b) = val;
Color::new(r, g, b, 1.0)
}
}
impl From<(f32, f32, f32, f32)> for Color {
/// Convert a `(R, G, B, A)` tuple of `f32`'s in the range `[0.0-1.0]` into a `Color`
fn from(val: (f32, f32, f32, f32)) -> Self {
let (r, g, b, a) = val;
Color::new(r, g, b, a)
}
}
impl From<Color> for (u8, u8, u8, u8) {
/// Convert a `Color` into a `(R, G, B, A)` tuple of `u8`'s in the range of `[0-255]`.
fn from(color: Color) -> Self {
let r = (color.r * 255.0) as u8;
let g = (color.g * 255.0) as u8;
let b = (color.b * 255.0) as u8;
let a = (color.a * 255.0) as u8;
(r, g, b, a)
}
}
impl From<Color> for (u8, u8, u8) {
/// Convert a `Color` into a `(R, G, B)` tuple of `u8`'s in the range of `[0-255]`,
/// ignoring the alpha term.
fn from(color: Color) -> Self {
let (r, g, b, _) = color.into();
(r, g, b)
}
}
impl From<Color> for [f32; 4] {
/// Convert a `Color` into an `[R, G, B, A]` array of `f32`'s in the range of `[0.0-1.0]`.
fn from(color: Color) -> Self {
[color.r, color.g, color.b, color.a]
}
}