1
0
Fork 0
mirror of https://github.com/ninjamuffin99/Funkin.git synced 2024-11-05 14:24:28 +00:00
Funkin/source/funkin/audiovis/dsp/FFT.hx
2023-01-22 22:25:45 -05:00

162 lines
5.4 KiB
Haxe
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package funkin.audiovis.dsp;
import funkin.audiovis.dsp.Complex;
using funkin.audiovis.dsp.OffsetArray;
using funkin.audiovis.dsp.Signal;
// these are only used for testing, down in FFT.main()
/**
Fast/Finite Fourier Transforms.
**/
class FFT
{
/**
Computes the Discrete Fourier Transform (DFT) of a `Complex` sequence.
If the input has N data points (N should be a power of 2 or padding will be added)
from a signal sampled at intervals of 1/Fs, the result will be a sequence of N
samples from the Discrete-Time Fourier Transform (DTFT) - which is Fs-periodic -
with a spacing of Fs/N Hz between them and a scaling factor of Fs.
**/
public static function fft(input:Array<Complex>):Array<Complex>
return do_fft(input, false);
/**
Like `fft`, but for a real (Float) sequence input.
Since the input time signal is real, its frequency representation is
Hermitian-symmetric so we only return the positive frequencies.
**/
public static function rfft(input:Array<Float>):Array<Complex>
{
final s = fft(input.map(Complex.fromReal));
return s.slice(0, Std.int(s.length / 2) + 1);
}
/**
Computes the Inverse DFT of a periodic input sequence.
If the input contains N (a power of 2) DTFT samples, each spaced Fs/N Hz
from each other, the result will consist of N data points as sampled
from a time signal at intervals of 1/Fs with a scaling factor of 1/Fs.
**/
public static function ifft(input:Array<Complex>):Array<Complex>
return do_fft(input, true);
// Handles padding and scaling for forwards and inverse FFTs.
static function do_fft(input:Array<Complex>, inverse:Bool):Array<Complex>
{
final n = nextPow2(input.length);
var ts = [for (i in 0...n) if (i < input.length) input[i] else Complex.zero];
var fs = [for (_ in 0...n) Complex.zero];
ditfft2(ts, 0, fs, 0, n, 1, inverse);
return inverse ? fs.map(z -> z.scale(1 / n)) : fs;
return fs;
}
// Radix-2 Decimation-In-Time variant of CooleyTukey's FFT, recursive.
static function ditfft2(time:Array<Complex>, t:Int, freq:Array<Complex>, f:Int, n:Int, step:Int, inverse:Bool):Void
{
if (n == 1)
{
freq[f] = time[t].copy();
}
else
{
final halfLen = Std.int(n / 2);
ditfft2(time, t, freq, f, halfLen, step * 2, inverse);
ditfft2(time, t + step, freq, f + halfLen, halfLen, step * 2, inverse);
for (k in 0...halfLen)
{
final twiddle = Complex.exp((inverse ? 1 : -1) * 2 * Math.PI * k / n);
final even = freq[f + k].copy();
final odd = freq[f + k + halfLen].copy();
freq[f + k] = even + twiddle * odd;
freq[f + k + halfLen] = even - twiddle * odd;
}
}
}
// Naive O(n^2) DFT, used for testing purposes.
static function dft(ts:Array<Complex>, ?inverse:Bool):Array<Complex>
{
if (inverse == null) inverse = false;
final n = ts.length;
var fs = new Array<Complex>();
fs.resize(n);
for (f in 0...n)
{
var sum = Complex.zero;
for (t in 0...n)
{
sum += ts[t] * Complex.exp((inverse ? 1 : -1) * 2 * Math.PI * f * t / n);
}
fs[f] = inverse ? sum.scale(1 / n) : sum;
}
return fs;
}
/**
Finds the power of 2 that is equal to or greater than the given natural.
**/
static function nextPow2(x:Int):Int
{
if (x < 2) return 1;
else if ((x & (x - 1)) == 0) return x;
var pow = 2;
x--;
while ((x >>= 1) != 0)
pow <<= 1;
return pow;
}
// testing, but also acts like an example
static function main()
{
// sampling and buffer parameters
final Fs = 44100.0;
final N = 512;
final halfN = Std.int(N / 2);
// build a time signal as a sum of sinusoids
final freqs = [5919.911];
final ts = [for (n in 0...N) freqs.map(f -> Math.sin(2 * Math.PI * f * n / Fs)).sum()];
// get positive spectrum and use its symmetry to reconstruct negative domain
final fs_pos = rfft(ts);
final fs_fft = new OffsetArray([for (k in -(halfN - 1)...0) fs_pos[-k].conj()].concat(fs_pos), -(halfN - 1));
// double-check with naive DFT
final fs_dft = new OffsetArray(dft(ts.map(Complex.fromReal)).circShift(halfN - 1), -(halfN - 1));
final fs_err = [for (k in -(halfN - 1)...halfN) fs_fft[k] - fs_dft[k]];
final max_fs_err = fs_err.map(z -> z.magnitude).max();
if (max_fs_err > 1e-6) haxe.Log.trace('FT Error: ${max_fs_err}', null);
// else for (k => s in fs_fft) haxe.Log.trace('${k * Fs / N};${s.scale(1 / Fs).magnitude}', null);
// find spectral peaks to detect signal frequencies
final freqis = fs_fft.array.map(z -> z.magnitude)
.findPeaks()
.map(k -> (k - (halfN - 1)) * Fs / N)
.filter(f -> f >= 0);
if (freqis.length != freqs.length)
{
trace('Found frequencies: ${freqis}');
}
else
{
final freqs_err = [for (i in 0...freqs.length) freqis[i] - freqs[i]];
final max_freqs_err = freqs_err.map(Math.abs).max();
if (max_freqs_err > Fs / N) trace('Frequency Errors: ${freqs_err}');
}
// recover time signal from the frequency domain
final ts_ifft = ifft(fs_fft.array.circShift(-(halfN - 1)).map(z -> z.scale(1 / Fs)));
final ts_err = [for (n in 0...N) ts_ifft[n].scale(Fs).real - ts[n]];
final max_ts_err = ts_err.map(Math.abs).max();
if (max_ts_err > 1e-6) haxe.Log.trace('IFT Error: ${max_ts_err}', null);
// else for (n in 0...ts_ifft.length) haxe.Log.trace('${n / Fs};${ts_ifft[n].scale(Fs).real}', null);
}
}