1
0
Fork 0
mirror of https://github.com/ninjamuffin99/Funkin.git synced 2024-12-12 08:25:13 +00:00
Funkin/source/funkin/util/BezierUtil.hx

83 lines
2.4 KiB
Haxe
Raw Normal View History

package funkin.util;
import flixel.math.FlxPoint;
class BezierUtil
{
/**
* Linearly interpolate between two values.
* Depending on p, 0 = a, 1 = b, 0.5 = halfway between a and b.
*/
static inline function mix2(p:Float, a:Float, b:Float):Float
{
return a * (1 - p) + (b * p);
}
/**
* Linearly interpolate between three values.
* Depending on p, 0 = a, 0.5 = b, 1 = c, 0.25 = halfway between a and b, etc.
*/
static inline function mix3(p:Float, a:Float, b:Float, c:Float):Float
{
return mix2(p, mix2(p, a, b), mix2(p, b, c));
}
static inline function mix4(p:Float, a:Float, b:Float, c:Float, d:Float):Float
{
return mix2(p, mix3(p, a, b, c), mix3(p, b, c, d));
}
static inline function mix5(p:Float, a:Float, b:Float, c:Float, d:Float, e:Float):Float
{
return mix2(p, mix4(p, a, b, c, d), mix4(p, b, c, d, e));
}
/**
* A bezier curve with two points.
* This is really just linear interpolation but whatever.
*/
public static function bezier2(p:Float, a:FlxPoint, b:FlxPoint):FlxPoint
{
return new FlxPoint(mix2(p, a.x, b.x), mix2(p, a.y, b.y));
}
/**
* A bezier curve with three points.
* @param p The percentage of the way through the curve.
* @param a The start point.
* @param b The control point.
* @param c The end point.
*/
public static function bezier3(p:Float, a:FlxPoint, b:FlxPoint, c:FlxPoint):FlxPoint
{
return new FlxPoint(mix3(p, a.x, b.x, c.x), mix3(p, a.y, b.y, c.y));
}
/**
* A bezier curve with four points.
* @param p The percentage of the way through the curve.
* @param a The start point.
* @param b The first control point.
* @param c The second control point.
* @param d The end point.
*/
public static function bezier4(p:Float, a:FlxPoint, b:FlxPoint, c:FlxPoint, d:FlxPoint):FlxPoint
{
return new FlxPoint(mix4(p, a.x, b.x, c.x, d.x), mix4(p, a.y, b.y, c.y, d.y));
}
/**
* A bezier curve with four points.
* @param p The percentage of the way through the curve.
* @param a The start point.
* @param b The first control point.
* @param c The second control point.
* @param c The third control point.
* @param d The end point.
*/
public static function bezier5(p:Float, a:FlxPoint, b:FlxPoint, c:FlxPoint, d:FlxPoint, e:FlxPoint):FlxPoint
{
return new FlxPoint(mix5(p, a.x, b.x, c.x, d.x, e.x), mix5(p, a.y, b.y, c.y, d.y, e.y));
}
}