open import Graph.Base module Graph.Reasoning where module ≡-Reasoning where infix 1 begin_ infixr 2 _≡⟨⟩_ _≡⟨_⟩_ infix 3 _∎ begin_ : ∀ { A : Set } { G H : Graph A } → G ≡ H → G ≡ H begin G≡H = G≡H _≡⟨⟩_ : ∀ { A : Set } (G : Graph A) { H : Graph A } → G ≡ H → G ≡ H G ≡⟨⟩ G≡H = G≡H _≡⟨_⟩_ : ∀ { A : Set } (G : Graph A) { H I : Graph A } → G ≡ H → H ≡ I → G ≡ I G ≡⟨ G≡H ⟩ H≡I = trans G≡H H≡I _∎ : ∀ { A : Set } (G : Graph A) → G ≡ G G ∎ = refl module ≤-Reasoning where infix 1 begin_ infixr 2 _≡⟨⟩_ _≡⟨_⟩_ _≤⟨⟩_ _≤⟨_⟩_ infix 3 _∎ begin_ : ∀ { A : Set } { G H : Graph A } → G ≤ H → G ≤ H begin G≤H = G≤H _≡⟨⟩_ : ∀ { A : Set } (G : Graph A) { H : Graph A } → G ≤ H → G ≤ H G ≡⟨⟩ G≤H = G≤H _≡⟨_⟩_ : ∀ { A : Set } (G : Graph A) { H I : Graph A } → G ≡ H → H ≤ I → G ≤ I G ≡⟨ G≡H ⟩ H≤I = ≤-trans (≡-to-≤ G≡H) H≤I _≤⟨⟩_ : ∀ { A : Set } (G : Graph A) { H : Graph A } → G ≤ H → G ≤ H G ≤⟨⟩ G≤H = G≤H _≤⟨_⟩_ : ∀ { A : Set } (G : Graph A) { H I : Graph A } → G ≤ H → H ≤ I → G ≤ I G ≤⟨ G≤H ⟩ H≤I = ≤-trans G≤H H≤I _∎ : ∀ { A : Set } (G : Graph A) → G ≤ G G ∎ = ≤-refl