
EasyBMP User Manual Version 1.06

EasyBMP User Manual (Version 1.06)

Paul Macklin

email: macklin01@users.sourceforge.net

WWW: http://easybmp.sourceforge.net

December 17, 2006

Abstract

We define and document a simple, easy-to-use, cross-platform/cross-architecture Windows bitmap
(BMP) library written in C++. The EasyBMP library will work for input and output on uncompressed
1, 4, 8, 16, 24, and 32 bpp (bits per pixel) Windows BMP files in just about any operating sys-
tem on just about any 32-bit or higher architecture. EasyBMP has been tested on both little-endian
(Pentium 3, Pentium 4, Celeron, Celeron M, Pentium M) and big-endian (Sun Sparc4) machines in
Linux, Solaris, and Windows on 32-bit and 64-bit CPU’s. Currently, GNU g++ (along with vari-
ants and/or frontends such as MinGW and Bloodshed), Intel’s compiler, Borland’s compiler, and
Microsoft’s MSVC++ compilers are fully supported.

EasyBMP is open source software and is licensed under the revised/modifed BSD license. Please see
the BSD (revised) license.txt file for further details. If you use this library in your application, it
is the author’s request that you notify him.

Contents

1 What’s New in this Release (Version 1.06) 2
1.1 Changes in Version 1.04 . 2
1.2 Changes in Version 1.05 . 2
1.3 Changes in Version 1.06 . 2

2 Introduction to the EasyBMP Library 3
2.1 Sample Application: Converting a Color Image to Grayscale 3

3 What’s EasyBMP Good for? 4

4 Installing and Using the EasyBMP Library 5

5 A Few Words on the BMP file format 6

6 Basic Bitmap Operations 7

7 Advanced Usage: Modifying the Color Table 9

Page 1

EasyBMP User Manual Version 1.06

8 Tools for Horizontal and Vertical Resolution 11

9 EasyBMP and Warning Messages 11

10 EasyBMP and Metadata 12

11 Extra Goodies: Various Bitmap Utilities 12

12 Hidden Helper Functions 14

13 Known Bugs and Quirks 14

14 Future Changes 14

15 Obtaining Support for EasyBMP or Contacting EasyBMP 15

A Classes and BMP Data Types 15
A.1 Miscellany . 15
A.2 RGBApixel . 15
A.3 BMP . 15

1 What’s New in this Release (Version 1.06)

Several major changes have been made since Version 1.03, including bugfixes, improved robustness,
code cleanups, and feature enhancements.

1.1 Changes in Version 1.04

Version 1.04 focused on improving compatibility with the Borland compiler. Very few warnings are
generated when compiling; those that remain can be safely ignored and point to quirks of Borland
rather than the code.

This release also added some new functionality: the ability to suppress all EasyBMP warning and
error messages. This new feature should be particularly useful for projects that have no need for
terminal output.

1.2 Changes in Version 1.05

Version 1.05 improved compatibility by adding a copy constructor for the BMP class. A new feature
was also added: bilinear image rescaling to a desired percentage, width, height, or square box fit.

1.3 Changes in Version 1.06

Version 1.06 fixed several minor bugs, particularly in the copy constructor. (Thank you to “redmaya”
in South Korea!) The cctype and cstring includes were added to improve compliance and compati-
bility. Lastly, GetPixel() and SetPixel() functions were added for future use, where we hope to be
more careful with the const keyword.

Page 2

EasyBMP User Manual Version 1.06

For further information on the changes made in EasyBMP, please see the EasyBMP ChangeLog.txt
file that is included with every release.

2 Introduction to the EasyBMP Library

During my studies at the University of Minnesota and the University of California, I needed a simple
method to create and modify images. Because the Windows BMP file format is nearly universally
readable, flexible, and simple, I decided to work with this format. (No compression to worry about,
potential for 8 bits per color channel, etc.)

There are many excellent open- and closed-source BMP and image libraries available, and in no
way do I claim that anything here is even equal to those libraries. However, as I looked about I noticed
that quite a few existing libraries had one or more of the following properties:

• too feature-rich (and accordingly more difficult to learn);

• required extensive installation;

• relied upon Linux or Windows libraries for simple functions;

• were too poorly documented for the novice programmer;

• required programming changes when moving code from one platform to another.

At that point, I decided to create my EasyBMP library. My goals included easy inclusion in C++
projects, ease of use, no dependence upon other libraries (totally self-contained), and cross-platform
compatibility.

2.1 Sample Application: Converting a Color Image to Grayscale

Here, we give a first sample application using the EasyBMP library. Notice that inclusion of the library
is simple: we include the EasyBMP.h file. In this application, we see a simple example of opening an
existing BMP file, reading its RGB information, and manipulating and writing that information to
another BMP file. The commands are pretty straightforward. This example should illustrate how
easy the library is for even the novice programmer.

#include "EasyBMP.h"
using namespace std;

int main(int argc, char* argv[])
{
if(argc != 3)
{
cout << "Usage: ColorBMPtoGrayscale <input_filename> <output_filename>"

<< endl << endl;
return 1;

}

// declare and read the bitmap
BMP Input;
Input.ReadFromFile(argv[1]);

Page 3

EasyBMP User Manual Version 1.06

// convert each pixel to grayscale using RGB->YUV
for(int j=0 ; j < Input.TellHeight() ; j++)
{
for(int i=0 ; i < Input.TellWidth() ; i++)
{
int Temp = (int) floor(0.299*Input(i,j)->Red +

0.587*Input(i,j)->Green +
0.114*Input(i,j)->Blue);

ebmpBYTE TempBYTE = (ebmpBYTE) Temp;
Input(i,j)->Red = TempBYTE;
Input(i,j)->Green = TempBYTE;
Input(i,j)->Blue = TempBYTE;
}

}

// Create a grayscale color table if necessary
if(Input.TellBitDepth() < 16)
{ CreateGrayscaleColorTable(Input); }

// write the output file
Input.WriteToFile(argv[2]);

return 0;
}

Additional code samples are available for download at

http://easybmp.sourceforge.net

3 What’s EasyBMP Good for?

Lots of things! Okay, so we’re a little biased. :-) EasyBMP was first used to easily load textures in
a homebrew raytracer. Later on, however, its focus shifted to being a simple, intuitive way to get
image data in and out of programs, particularly scientific applications. Some sample application ideas
include:

1. If you have a scientific computation that runs for hours, days, or weeks, you could add a quick
routine that outputs a snapshot of the simulation after every time step. This would provide an
easy way to check the status of your long-running simulation without the overhead of starting
up Matlab, Tecplot, etc. With X-forwarding, you could even check your simulation snapshot
remotely over an SSH shell on free WiFi at Panera! :-)

2. You could write a small program that generates animation frames from your simulation data.
Then, remotely start the program over a command line shell, let it run on its own, and collect
the results later. Again, no overhead of Tecplot or Matlab, and no user interaction required!
(You could then combine the movie frames into an AVI animation using EasyBMPtoAVI. See
http://easybmptoavi.sourceforge.net.)

Page 4

EasyBMP User Manual Version 1.06

3. Import patient data (e.g., MRI imagery) into a patient-tailored simulation or for medical analysis.

4. Create arbitrary starting shapes for level set methods based on your own hand-drawn BMP files.
This eliminates the artificial restriction of only being able to simulate shapes whose level set
functions that can readily be described with a formula.

5. Interface your science applications with imaging equipment.

6. Use EasyBMP as a quick testbed for new image processing ideas.

7. Import snapshots from a webcam, compare them, and use EasyBMP to remotely detect changes
in a room.

8. Import textures for raytracing and OpenGL programs.

9. Save screenshots of OpenGL programs. Or an X program. Or ...

10. Create nice graphics for a system monitoring utility.

4 Installing and Using the EasyBMP Library

Installing the EasyBMP library is easy. Simply copy all the *.h and *.cpp files to the directory of your
project. Alternatively, copy all the header files anywhere in your compiler’s path. You should have
the following files:

1. EasyBMP.h

2. EasyBMP DataStructures.h

3. EasyBMP BMP.h

4. EasyBMP VariousBMPutilities.h

5. EasyBMP.cpp

along with a code sample in the sample directory.

To use the EasyBMP library, simply include the EasyBMP.h file via

#include "EasyBMP.h"

Note that if you have copied all the EasyBMP source files to your compiler path, you may not need the
quotes, but rather brackets:

#include <EasyBMP.h>

Compile your source code as you normally would along with the single EasyBMP.cpp file; you don’t
have to link to anything. For instance, to compile the code example above with g++, use

g++ -o ColorBMPtoGrayscale ColorBMPtoGrayscale.cpp EasyBMP.cpp

A sample project with a makefile is included in the sample directory. It demonstrates how to com-
pile EasyBMP with a makefile. Please see the project website at http://easybmp.sourceforge.net
for further compiling instructions, particularly for Microsoft Visual Studio and makefile tutorials.

Page 5

EasyBMP User Manual Version 1.06

5 A Few Words on the BMP file format

Any BMP file begins with a file header, which contains information on the file size and data location.
The file header is followed by an info header, which has information on the dimensions and color depth
of the file. All this information is stored in the first 54 bytes of the file.

After that, the data is stored. There are two basic storage schemes for BMP files. If the bit depth
is 8 or less (256 colors or fewer), the colors are stored in a table of (red,green,blue,alpha) values im-
mediately after the info header. In this indexed format, each pixel in the image refers to the position
of a color in the color table. In essence, this storage technique is “painting by number.” The benefit
is that each pixel requires little space, but each of the 256 colors can attain the full range allowed on
modern machines. (One of 2563 colors with 256 values of transparency.)

The other scheme involves storing the red, green, and blue data at every pixel, along with (possi-
bly) the alpha value. This format is very intuitive and allows for the full range of colors for all pixels.
However, the resulting files are substantially larger than for 1, 4, and 8 bpp (bits per pixel) files.

An intermediate storage scheme is to allocate two consecutive bytes per every pixel (16 bpp bit
depth). In this scheme, 5 bits are allocated to red and blue, and 5 or 6 bits are allocated to green.
The green channel is given preference over the other channels because the human eye is most sensitive
to green, followed by red and then blue; allocating the extra bit to green makes the most rational use
of the space when considering the human viewer.

EasyBMP internally converts all files to 32 bpp for ease and consistency of handling. In particular,
this makes it easy to write add-on functions that work on all bit-depth files. EasyBMP converts back
to the original bit depth when saving the file.

The coordinate system of a BMP file has its origin in the top left corner of the image. The
(i, j)th pixel is i pixels from the left and j pixels from the top. EasyBMP indexes pixels with the same
coordinate system. See Figure 1.

(0,N-1)

(0,0) (M-1,0)

(M-1,N-1)

i

j u
(i,j)

Figure 1: Coordinate system for an M × N BMP image. The black circle indicates

the (i,j)th pixel in the coordinate system.

Page 6

EasyBMP User Manual Version 1.06

6 Basic Bitmap Operations

As of Version 0.55, EasyBMP has a unified interface for all bit depths. To initialize a new BMP object,
simply declare it:

Example:

// Declare a new bitmap object
BMP AnImage;

When you declare a BMP image, you will have a 1× 1 blank 24 bpp (bits per pixel) bitmap image.
Next, set the size and bit depth of the image. You can do this either by reading an existing bitmap
image or setting this information manually, as below:

Example:

BMP AnImage;
// Set size to 640 × 480
AnImage.SetSize(640,480);
// Set its color depth to 8-bits
AnImage.SetBitDepth(8);
// Declare another BMP image
BMP AnotherImage;
// Read from a file
AnotherImage.ReadFromFile("sample.bmp");

To check the bit depth, width, and height of a BMP object, use:

Example:

BMP AnImage;
AnImage.ReadFromFile("sample.bmp");
cout << "File info:" << endl;
cout << AnImage.TellWidth() << " x " << AnImage.TellHeight()

<< " at " << AnImage.TellBitDepth() << " bpp" << endl;

EasyBMP also provides a simple routine to compute and display the number of colors:

Example:

BMP AnImage;
AnImage.ReadFromFile("sample.bmp");
cout << "colors: " << AnImage.TellNumberOfColors() << endl;

Note that for a 32 bpp file, we don’t regard two colors that differ only in the alpha channel as
different colors; this function will state that 32 bpp and 24 bpp files have the same number of colors.

The bit depth and dimensions of a bitmap can be changed at any time:

Page 7

EasyBMP User Manual Version 1.06

Example:

BMP AnImage;
AnImage.ReadFromFile("sample.bmp");
// Change the bit-depth
AnImage.SetBitDepth(8);
AnImage.SetBitDepth(24);
// Change the size
AnImage.SetSize(1024,768);

Note that whenever the bit depth is changed, any existing color table is erased. Likewise, whenever
the size is changed, all pixels are deleted.

To access pixels, use RGBApixel* operator()(int,int):

Example:

BMP AnImage;
AnImage.ReadFromFile("sample.bmp");
// show the color of pixel (14,18)
cout << "(" << (int) AnImage(14,18)->Red << ","

<< (int) AnImage(14,18)->Green << ","
<< (int) AnImage(14,18)->Blue << ","
<< (int) AnImage(14,18)->Alpha << ")" << endl;

// Change this pixel to a blue-grayish color
AnImage(14,18)->Red = 50;
AnImage(14,18)->Green = 50;
AnImage(14,18)->Blue = 192;
AnImage(14,18)->Alpha = 0;

You can also access pixels using RGBApixel GetPixel(int,int) and bool SetPixel(int,int,RGBApixel):

Example:

BMP AnImage;
AnImage.ReadFromFile("sample.bmp");
// show the color of pixel (14,18)
RGBApixel Temp = AnImage.GetPixel(14,18);
cout << "(" << (int) Temp.Red << ","

<< (int) Temp.Green << ","
<< (int) Temp.Blue << ","
<< (int) Temp.Alpha << ")" << endl;

// Change this pixel to a blue-grayish color
Temp.Red = 50; Temp.Green = 50; Temp.Blue = 192; Temp.Alpha = 0;
AnImage.SetPixel(14,18,Temp);

Lastly, to save to a file, use WriteToFile(char*):

Page 8

EasyBMP User Manual Version 1.06

Example:

BMP AnImage;
AnImage.ReadFromFile("sample.bmp");
AnImage.WriteToFile("copied.bmp");

7 Advanced Usage: Modifying the Color Table

In EasyBMP, the BMP class will automatically generate a “Windows standard” color table whenever one
is required (for 1, 4, and 8 bpp files). However, it is possible to access and modify individual colors in
the color table. If you want to see what the nth color in the color table and change another, use the
following:

Example:

BMP SomeImage;
// Set the bit depth to 8 bpp
SomeImage.SetBitDepth(8);
// Get the 40th color
RGBApixel SomeColor = SomeImage.GetColor(40);
// Display the color
cout << (int) SomeColor.Red << ","

<< (int) SomeColor.Green << ","
<< (int) SomeColor.Blue << ","
<< (int) SomeColor.Alpha << endl;

// Change the 14th color to red
RGBApixel NewColor;
NewColor.Red = 255;
NewColor.Green = 0;
NewColor.Blue = 0;
NewColor.Alpha = 0;
SomeImage.SetColor(14,NewColor);

You can reset the color table to the “Windows standard” color table at any time:

Example:

BMP SomeImage;
// Set the bit depth to 8 bpp
SomeImage.SetBitDepth(8);
// Change the 14th color to red
RGBApixel NewColor;
NewColor.Red = 255;
NewColor.Green = 0;
NewColor.Blue = 0;
NewColor.Alpha = 0;
SomeImage.SetColor(14,NewColor);
// Reset the color table
SomeImage.CreateStandardColorTable();

Page 9

EasyBMP User Manual Version 1.06

To maintain previously-provided functionality, EasyBMP still provides a grayscale color table generator:

Example:

BMP SomeImage;
// Set the bit depth to 8 bpp
SomeImage.SetBitDepth(8);
// Create a grayscale color table
CreateGrayscaleColorTable(SomeImage);

Notice that in the example, the argument is a BMP object.

If you want to modify a color table for a BMP file, you can do so by using the SetColor(int,RGBApixel)
member function. To avoid messy error messages, any color table operation should do nothing when
applied to a 16, 24, or 32 bpp file. Consider this example:

Example:

void CreateRedColorTable(BMP& InputImage)
{
int BitDepth = InputImage.TellBitDepth();
if(BitDepth != 1 && BitDepth != 4 && BitDepth != 8){ return; }
int NumberOfColors = IntPow(2,BitDepth); int i;
ebmpBYTE StepSize;
if(BitDepth != 1)
{ StepSize = 255/(NumberOfColors-1); }
else
{ StepSize = 255; }
for(i=0 ; i < NumberOfColors ; i++)
{
RGBApixel Temp;
Temp.Red = i*StepSize;
Temp.Green = 0;
Temp.Blue = 0;
Temp.Alpha = 0;
InputImage.SetColor(i,Temp);
}
}

To call this new function, you would do this:

Example:

BMP RedImage;
RedImage.ReadFromFile("sample.bmp");
RedImage.SetBitDepth(8);
CreateRedColorTable(RedImage);

Page 10

EasyBMP User Manual Version 1.06

8 Tools for Horizontal and Vertical Resolution

In some circumstances, it may be useful to specify the horizontal and vertical resolution of the machine
where a bitmap image was generated. The BMP provides for this possibility with the biXPelsPerMeter
and biYPelsPerMeter data members, although most files simply set these to 0, indicating that the
system default should be used instead.

EasyBMP now supports setting these numbers via the SetDPI() function:

Example:

BMP SomeImage;
SomeImage.ReadFromFile("sample.bmp");
// Set horizontal resolution to 64 DPI and vertical to 32 DPI
SomeImage.SetDPI(64,32);

The default vertical and horizontal resolutions are 96 dpi, and they are indicated by the globals

Example:

int DefaultXPelsPerMeter = 3780;
int DefaultYPelsPerMeter = 3780;

You can change the default behavior by setting these global variables to your own preferred values.
The conversion is pretty simple:

DefaultXPelsPerMeter = (DesiredDefaultDPI dots / inch) ·
(

1 inches
2.54 cm

)
·
(

100 cm
1 m

)

=
DesiredDefaultDPI

0.0254
dots / meter.

The DefaultYPelsPerMeter can be changed similarly.

9 EasyBMP and Warning Messages

You can turn the error and warning messages on or off in EasyBMP; this is most useful for applications
where terminal output is not desired.

Example:

// turn the error messages off
SetEasyBMPwarningsOff();

// The following line would ordinarily give an out-of-range warning.
SomeImage(SomeImage.TellWidth() , SomeImage.TellHeight())->Red = 0;

// turn the messages back off
SetEasyBMPwarningsOn();

// query the current message status
cout << "EasyBMP warning status: " << GetEasyBMPwarningState() << endl;

Page 11

EasyBMP User Manual Version 1.06

10 EasyBMP and Metadata

EasyBMP currently supports reading BMP files with metadata by skipping it; in particular, EasyBMP
does not preserve or save metadata. In the future, EasyBMP will preserve metadata occurring before
and after the pixel data, as well as allow for the writing of additional metadata.

11 Extra Goodies: Various Bitmap Utilities

We have provided several sample utilities to make the library more immediately useful. We shall detail
some of these goodies here. :-).

The first several utilities deal with getting file information from existing files.

• void DisplayBitmapInfo(char* szFileNameIn): This routine displays the bitmap informa-
tion from an existing bitmap. All information is given. (width and height of image, bit depth,
etc.)

• BMFH GetBMFH(char* szFileNameIn): This returns a BMFH based on the file. See Section A
for more information on the data structure.

• BMIH GetBMIH(char* szFileNameIn): This returns a BMIH based on the file. See Section A
for more information on the data structure.

• int GetBitmapColorDepth(char* szFileNameIn): This routine returns the bit depth of the
file.

Other provided functions are “cut ‘n’ paste” functions: they copy pixels from one BMP object to
another, with or without transparency.

• void PixelToPixelCopy(BMP& From, int FromX, int FromY,
BMP& To, int ToX, int ToY)

This function copies the (FromX,FromY) pixel of the BMP object From to pixel (ToX,ToY) of the
BMP object To.

• void PixelToPixelCopyTransparent(BMP& From, int FromX, int FromY,
BMP& To, int ToX, int ToY,
RGBApixel& Transparent)

This function copies the (FromX,FromY) pixel of the BMP object From to pixel (ToX,ToY) of the
BMP object To, and it treats the input pixel as transparent if its color is Transparent. Here’s an
example:

Example:

BMP Image1;
BMP Image2;
Image1.ReadFromFile("Blah.bmp");
Image2.SetSize(10,10);
RGBApixel TransparentColor;
TransparentColor.Red = 255;
TransparentColor.Green = 255;
TransparentColor.Blue = 255;
PixelToPixelCopyTransparent(Image1,3,5,Image2,0,0,TransparentColor);

Page 12

EasyBMP User Manual Version 1.06

Note that the alpha channel is ignored when considering transparency.

• void RangedPixelToPixelCopy(BMP& From, int FromL , int FromR, int FromB, int FromT,
BMP& To, int ToX, int ToY)

This function copies a range of pixels from one image to another. It copies the rectangle
[FromL , FromR] × [FromB , FromT] in image From to the rectangle whose top left corner
is (ToX , ToY) in image To. When using this function, don’t forget that the top left corner
of the image is (0,0) in the coordinate system! Also, FromB denotes the bottom edge of the
rectangle, so FromB > FromT. However, if the algorithm detects that you accidentally reversed
these numbers, it will automatically swap them for you. Lastly, if the rectangle you chose to
copy from image From overlaps the boundary of image To, it will truncate the the copy selection,
rather than give a nasty segmentation fault. :-)

• void RangedPixelToPixelCopyTransparent(
BMP& From, int FromL , int FromR, int FromB, int FromT,
BMP& To, int ToX, int ToY ,
RGBApixel& Transparent)

This function does the same thing as the previous function, but with support for transparency.
As in the example for the pixel-to-pixel copy above, you specify a transparent color of type
RGBApixel.

To maintain backward compatibility, we provide a function to generate a grayscale color table.

• bool CreateGrayscaleColorTable(BMP& InputImage): This function creates a grayscale
color table for any 1, 4, or 8 bpp BMP object. It returns true when successful and false
otherwise. An example is given in Section 7.

The last function rescales an image:

• bool Rescale(BMP& InputImage, char mode, int NewDimension);

There are several different modes of operation available, which are probably best explained by
example. All scaling is done by bilinear interpolation. Note that the mode input is not case-
sensitive.

Example:

BMP AnImage;
AnImage.ReadFromFile("sample.bmp");
// rescale to 42% of original size
Rescale(AnImage , ’p’, 42);

// rescale (preserving aspect ratio) to width 100
Rescale(AnImage , ’W’, 100);

// rescale (preserving aspect ratio) to height 100
Rescale(AnImage , ’H’, 100);

// rescale (preserving aspect ratio) to fit in a 100 x 100 box
Rescale(AnImage , ’f’, 100);

Page 13

EasyBMP User Manual Version 1.06

12 Hidden Helper Functions

EasyBMP has a few helper functions that are intended primarily for internal use, but may also be
helpful for your code.

• double Square(double number): This routine gives the square of the double number. It is
much faster than using the standard library pow(double,2.0).

• int IntSquare(int number): This does the same as the above, but with faster integer oper-
ations.

• int IntPow(int base, int exponent): Instead of calling pow(x,n) where x and n are inte-
gers, use this function. It’s much faster. Beware against using negative exponents, as they aren’t
supported.

13 Known Bugs and Quirks

As of Version 1.06, there is one known quirk: there is no operator= operator defined for the BMP class.
This means that you can’t do code operations like this:

Example:

BMP Sample1;
Sample1.ReadFromFile("sample1.bmp");
BMP Sample2;
Sample2.ReadFromFile("sample2.bmp");
Sample1 = Sample2;

AFAIK, the biggest implication of this is that you won’t want to make functions that return a BMP
object. Instead, if you want to modify a BMP object in a function, you should pass it by reference to
the function. An example of this can be seen in the CreateRedColorTable(BMP&) sample function
given in an earlier section.

operator= functionality may be added to EasyBMP at a later date, but only if they do not interfere
with stability and robustness.

The other “quirk” in EasyBMP is that writing 8 bpp images is very slow. This is a consequence of
the fact that 8 bpp images can be operated on just like 24 bpp images, and so the write routine must
search for the best fit color for each pixel when saving. This may be improved in future versions of
EasyBMP.

14 Future Changes

Future changes may include:

1. an optimal color table GenerateOptimalColorTable() generator function;

2. eliminating the use of ceil and floor functions, as well conversions from double to int wherever
possible.

3. adding support for metadata before and after the pixel data

4. improving file write speeds for 8 bpp files.

Page 14

EasyBMP User Manual Version 1.06

15 Obtaining Support for EasyBMP or Contacting EasyBMP

If you need support, have a feature request, or have other feedback on EasyBMP, please open a new
support tracker item at http://easybmp.sourceforge.net. (See the “support” link on that page.)
If you also desire email support, you can email Paul Macklin at macklin01@users.sourceforge.net
or indicate your email address in your tracker item. However, please still open a tracker item in such
a case.

Lastly, Paul would love to hear back from people who have successfully used EasyBMP in their own
projects.

A Classes and BMP Data Types

Here, we detail the various classes and data types and how to interface with them.

A.1 Miscellany

Some of the data types that are used in the construction of more complex data types are:

Type: Info:
ebmpBYTE an unsigned character of 8 bits
ebmpWORD an unsigned short of 16 bits
ebmpDWORD an unsigned long of 32 bits
BMFH a specific header format for a BMP file
BMIH provides additional information on the BMP file

For additional information on the BMFH and BMIH classes, I highly recommend that you visit

http://www.fortunecity.com/skyscraper/windows/364/bmpffrmt.html.

A.2 RGBApixel

This data structure is exactly as their its suggests: a single pixel of (red,green,blue,alpha) data. This
data structure is used both for individual pixels within an image and the color table in the palette.
Here are the details on the data structure:

Member: Function:
Blue blue pixel info of type BYTE
Green green pixel info of type BYTE
Red red pixel info of type BYTE
Alpha alpha pixel info of type BYTE

A.3 BMP

The BMP class consists of all the necessary pixel information for a Windows bitmap file, along with file
I/O routines.

• int BitDepth: This gives the number of bits per pixel, i.e., the color depth. This data member
is private and can only be accessed through TellBitDepth and SetBitDepth.

Page 15

EasyBMP User Manual Version 1.06

• int Width: This gives the width of the bitmap in pixels. This data member is private and can
only be accessed through TellWidth and SetSize.

• int Height: This gives the height of the bitmap in pixels. This data member is private and can
only be accessed through TellHeight and SetSize.

• RGBApixel** Pixels: This is the actual Width × Height array of RGBApixel’s. This data
member is private and can only be accessed through operator().

• RGBApixel* Colors: This is the table of colors, stored as RGBApixel’s. If the BMP object is
24-bits or 32-bits, then Colors = NULL. This data member is private and can only be accessed
through GetColor and SetColor.

• int XPelsPerMeter: This records the horizontal resolution in pixels per meter. This private
data member can only be accessed through SetDPI(). This value defaults to 3780, i.e., 96 dpi.

• int YPelsPerMeter: This records the vertical resolution in pixels per meter. This private data
member can only be accessed through SetDPI(). This value defaults to 3780, i.e., 96 dpi.

• BYTE* MetaData1: This is a placeholder for future metadata before the pixel data. This data
member is private. This is currently a placeholder.

• int SizeOfMetaData1: This private data member gives the size of MetaData1 in bytes. This is
currently a placeholder.

• BYTE* MetaData2: This is a placeholder for future metadata after the pixel data. This data
member is private. This is currently a placeholder.

• int SizeOfMetaData2: This private data member gives the size of MetaData2 in bytes. This is
currently a placeholder.

• void SetDPI(int HorizontalDPI, int VerticalDPI): This function sets the private data
members XPelsPerMeter and YPelsPerMeter such that the image has horizontal and vertical
resolutions HorizontalDPI and VerticalDPI dots per inch, respectively.

• int TellBitDepth(void): This function outputs the bit depth of the BMP object.

• int TellWidth(void): This function outputs the width of the BMP object.

• int TellHeight(void): This function outputs the height of the BMP object.

• int TellNumberOfColors(void): This function outputs the number of colors of the BMP ob-
ject.

• BMP(): This constructor creates a 1 × 1, 24 bpp BMP object.

• BMP(BMP& Input): This the copy constructor, which is used when BMP objects are passed by
value, rather than reference.

• ~BMP(): This is the destructor. You should never call this; it is automatically called when a BMP
object goes out of scope.

• RGBApixel GetPixel(int i, int j) const: This is used to get the contents of the (i,j)
pixel while respecting const, using a syntax similar to the color table functions below. Primarily
for future use.

• bool SetPixel(int i, int j, RGBApixel NewPixel): This is used to set the contents of
the (i,j) pixel in a syntax similar to the color table functions below. Primarily for future use.

• RGBApixel* operator()(int i, int j): This returns a pointer to the (i,j) pixel.

Page 16

EasyBMP User Manual Version 1.06

Example:

BMP Sample;
Sample.SetSize(10,10);
Sample(3,4)->Red = 255;
Sample(3,4)->Alpha = 0;
Sample(3,4)->Blue = Sample(3,4)->Red;

If operator() is used on a pixel that is out of range, it warns the user and automatically
truncates the range.

• bool SetSize(int NewWidth, int NewHeight): Use this to change the size of the object to
NewWidth × NewHeight. See the example above. If NewWidth or NewHeight is non-positive, this
function gives a warning and does nothing. Returns true or false to indicate success or failure.

• bool SetBitDepth(int NewDepth): This function changes the bit depth to NewDepth bits
per pixel. It also automatically creates and/or resizes the color table, if necessary. If NewDepth
is not one of 1, 4, 8, 24, or 32, the function gives an error and does nothing. Returns true or
false to indicate success or failure.

• bool WriteToFile(char* FileName): This function writes the current BMP object to the file
FileName. Returns true or false to indicate success or failure.

• bool ReadFromFile(char* FileName): This function reads the file FileName into the current
BMP object. Returns true or false to indicate success or failure.

• RGBApixel GetColor(int ColorNumber): This function returns color number ColorNumber
in the color table of the current BMP object. If ColorNumber is out of range or the BMP does not
have a color table (e.g., in the case of a 24-bit file), this function gives a warning and returns a
black pixel.

• bool SetColor(int ColorNumber , RGBApixel NewColor): This function sets color number
ColorNumber in the color table of the current BMP object to NewColor. If ColorNumber is out of
range or the BMP does not have a color table (e.g., in the case of a 24-bit file), this function gives
a warning and does nothing. Returns true or false to indicate success or failure.

• bool CreateStandardColorTable(void): This function creates a “Windows standard” color
table for the BMP object. If the bit depth is 24 or 32, the function gives a warning and does
nothing. Returns true or false to indicate success or failure.

Page 17

