Classical mechanics: from Lagrangian to Hamiltonian, single particle formalism, small oscillations, normal modes, Hamilton-Jacobi theory, Hamilton's equation, review of wave mechanics: Schroedinger equation, barrier tunneling, quantum wells, mathematical foundation of quantum mechanics: ket space, representations, observables, eigenstates and diagonization, quantum postulates, application of quantum postulates to two-level systems, harmonic oscillators, creation and annihilation operators. Quantization of angular momentum, spherical harmonics, rotation operators, Landau levels, central force: hydrogen atom. Path integral formalism for quantum theory.Â
Spring | Summer | Fall | ||
---|---|---|---|---|
(Session 1) | (Session 2) | |||
2023 |
Quantum Mechanics I (4c)
|
|||
2022 |
Quantum Mechanics I (4c)
|
|||
2021 |
Quantum Mechanics I (4c)
|
|||
2020 |
Quantum Mechanics I (4c)
|
|||
2019 |
Quantum Mechanics I (4c)
|
|||
2018 |
Quantum Mechanics I (4c)
|
|||
2017 |
Quantum Mechanics I (4c)
|
|||
2016 |
Quantum Mechanics I (4c)
|
|||
2015 |
Quantum Mechanics I (4c)
|
|||
2014 |
Quantum Mechanics I (4c)
|
|||
2013 |
Quantum Mechanics I (4c)
|
|||
2012 |
Quantum Mechanics I (4c)
|
|||
2011 |
Quantum Mechanics I (4c)
|
|||
2010 |
Quantum Mechanics I (4c)
|
|||
2009 |
Quantum Mechanics I (4c)
|
|||
2008 |
Quantum Mechanics I (4c)
|
|||
2007 |
Quantum Mechanics I (4c)
|