Linear vector spaces; eigenvalues and eigenvectors in discrete systems; eigenvalues and eigenvectors in continuous systems including Sturm-Liouville theory, orthogonal expansions and Fourier series, Green's functions; elementary theory of nonlinear ODEs including phase plane, stability and bifurcation; calculus of variations. Applications will be drawn from equilibrium and dynamic phenomena in science and engineering.
| Spring | Summer | Fall | ||
|---|---|---|---|---|
| (Session 1) | (Session 2) | |||
| 2023 | ||||
| 2022 | ||||
| 2021 | ||||
| 2020 | ||||
| 2019 | ||||
| 2018 | ||||
| 2017 | ||||
| 2016 | ||||
| 2015 | ||||
| 2014 | ||||
| 2013 | ||||
| 2012 | ||||
| 2011 | ||||
| 2010 | ||||
| 2009 | ||||
| 2008 | ||||
| 2007 | ||||
| 2006 | ||||
| 2005 | ||||
| 2004 | ||||
| 2003 | ||||
| 2002 | ||||
| 2001 | ||||
| 2000 | ||||
| 1999 | ||||
| 1998 | ||||