The theory underlying vector spaces, algebra of subspaces, bases; linear transformations, dual spaces; eigenvectors, eigenvalues, minimal polynomials, canonical forms of linear transformations; inner products, adjoints, orthogonal projections, and complements.
Spring | Summer | Fall | ||
---|---|---|---|---|
(Session 1) | (Session 2) | |||
2023 |
Linear Algebra (4c)
|
Linear Algebra (4c)
|
Linear Algebra (4c)
|
|
2022 |
Linear Algebra (4c)
|
Linear Algebra (4c)
|
Linear Algebra (4c)
|
|
2021 |
Linear Algebra (4c)
|
Linear Algebra (4c)
|
Linear Algebra (4c)
|
|
2020 |
Linear Algebra (4c)
|
Linear Algebra (4c)
|
Linear Algebra (4c)
|
|
2019 |
Linear Algebra (4c)
|
Linear Algebra (4c)
|
||
2018 |
Linear Algebra (4c)
|
Linear Algebra (4c)
|
||
2017 |
Linear Algebra (4c)
|
|||
2016 |
Linear Algebra (4c)
|
|||
2015 |
Linear Algebra (4c)
|
|||
2014 |
Linear Algebra (4c)
|
|||
2013 |
Linear Algebra (4c)
|
|||
2012 |
Linear Algebra (4c)
|
|||
2011 |
Linear Algebra (4c)
|
|||
2010 |
Linear Algebra (4c)
|
|||
2009 |
Linear Algebra (4c)
|
|||
2008 |
Linear Algebra (4c)
|
|||
2007 |
Linear Algebra (4c)
|