Introduction to data science and machine learning, with case studies in discovery of structure-property relationships and new materials from experimental and computational data. Brief review of required background in linear algebra and statistics with hands-on exercises in Python. Data science topics: model fitting, clustering, dimensionality reduction, ontologies, Bayesian inference, and design of experiments.
| Spring | Summer | Fall | ||
|---|---|---|---|---|
| (Session 1) | (Session 2) | |||
| 2024 | ||||
| 2023 | ||||
| 2022 | ||||
| 2021 | ||||
| 2020 | ||||
| 2019 | ||||
| 2018 | ||||
| 2017 | ||||
| 2016 | ||||
| 2015 | ||||
| 2014 | ||||
| 2013 | ||||
| 2012 | ||||
| 2011 | ||||
| 2010 | ||||
| 2009 | ||||
| 2008 | ||||
| 2007 | ||||
| 2006 | ||||
| 2005 | ||||
| 2004 | ||||
| 2003 | ||||
| 2002 | ||||
| 2001 | ||||
| 2000 | ||||
| 1999 | ||||
| 1998 | ||||