Linear vector spaces; eigenvalues and eigenvectors in discrete systems; eigenvalues and eigenvectors in continuous systems including Sturm-Liouville theory, orthogonal expansions and Fourier series, Green’s functions; elementary theory of nonlinear ODEs including phase plane, stability and bifurcation; calculus of variations. Applications will be drawn from equilibrium and dynamic phenomena in science and engineering.
Spring | Summer | Fall | ||
---|---|---|---|---|
(Session 1) | (Session 2) | |||
2024 | ||||
2023 | ||||
2022 | ||||
2021 | ||||
2020 | ||||
2019 | ||||
2018 | ||||
2017 | ||||
2016 | ||||
2015 | ||||
2014 | ||||
2013 | ||||
2012 | ||||
2011 | ||||
2010 | ||||
2009 | ||||
2008 | ||||
2007 | ||||
2006 | ||||
2005 | ||||
2004 | ||||
2003 | ||||
2002 | ||||
2001 | ||||
2000 | ||||
1999 | ||||
1998 |