Graduate-level course on the fundamental concepts and technologies underlying finite element methods for the numerical solution of continuum problems. The course emphasizes the construction of integral weak forms for elliptic partial differential equations and the construction of the elemental level matrices using multi-dimensional shape functions, element level mappings, and numerical integration. The basic convergence properties of the finite element method will be given. This course serves as preparation for students working on finite element methods.
Spring | Summer | Fall | ||
---|---|---|---|---|
(Session 1) | (Session 2) | |||
2025 | ||||
2024 | ||||
2023 | ||||
2022 | ||||
2021 | ||||
2020 | ||||
2019 | ||||
2018 | ||||
2017 | ||||
2016 | ||||
2015 | ||||
2014 | ||||
2013 | ||||
2012 | ||||
2011 | ||||
2010 | ||||
2009 | ||||
2008 | ||||
2007 | ||||
2006 | ||||
2005 | ||||
2004 | ||||
2003 | ||||
2002 | ||||
2001 | ||||
2000 | ||||
1999 | ||||
1998 |