diff --git a/courses/CSCI-4140.html b/courses/CSCI-4140.html new file mode 100644 index 000000000..280b82932 --- /dev/null +++ b/courses/CSCI-4140.html @@ -0,0 +1,369 @@ + + +
++ The first portion of this course introduces the optimization background necessary to understand the algorithms that dominate the landscape of machine learning. The second portion introduces effective architectures used in modern machine learning. Students revisit classical models and learn state-of-the-art models, always in service of gaining algorithmic insight that is broadly useful beyond specific models. +
++ | Spring | +Summer | +Fall | +|
---|---|---|---|---|
+ | (Session 1) | +(Session 2) | ++ | |
2024 | ++ | ++ | ++ | +|
2023 | ++ | ++ | ++ | +|
2022 | ++ | ++ | ++ | +|
2021 | ++ | ++ | ++ | +|
2020 | ++ | ++ | ++ | +|
2019 | ++ | ++ | ++ | +|
2018 | ++ | ++ | ++ | +|
2017 | ++ | ++ | ++ | +|
2016 | ++ | ++ | ++ | +|
2015 | ++ | ++ | ++ | +|
2014 | ++ | ++ | ++ | +|
2013 | ++ | ++ | ++ | +|
2012 | ++ | ++ | ++ | +|
2011 | ++ | ++ | ++ | +|
2010 | ++ | ++ | ++ | +|
2009 | ++ | ++ | ++ | +|
2008 | ++ | ++ | ++ | +|
2007 | ++ | ++ | ++ | +|
2006 | ++ | ++ | ++ | +|
2005 | ++ | ++ | ++ | +|
2004 | ++ | ++ | ++ | +|
2003 | ++ | ++ | ++ | +|
2002 | ++ | ++ | ++ | +|
2001 | ++ | ++ | ++ | +|
2000 | ++ | ++ | ++ | +|
1999 | ++ | ++ | ++ | +|
1998 | ++ | ++ | ++ | +
+ This is an introductory course on the theory and practice of reinforcement learning (RL). We will derive the full RL framework, starting from Markov chains and Markov reward processes and building up to Markov decision processes. We will then cover classic RL approaches such as dynamic programming, Monte Carlo methods and Q-learning. Furthermore, we will cover more advanced topics such as deep learning, deep RL, as well as policy-gradient and actor-critic methods. Course activities include programming assignments as well as written homework testing students’ understanding of the material. +
++ | Spring | +Summer | +Fall | +|
---|---|---|---|---|
+ | (Session 1) | +(Session 2) | ++ | |
2024 | ++ | ++ | ++ | +|
2023 | ++ | ++ | ++ | +|
2022 | ++ | ++ | ++ | +|
2021 | ++ | ++ | ++ | +|
2020 | ++ | ++ | ++ | +|
2019 | ++ | ++ | ++ | +|
2018 | ++ | ++ | ++ | +|
2017 | ++ | ++ | ++ | +|
2016 | ++ | ++ | ++ | +|
2015 | ++ | ++ | ++ | +|
2014 | ++ | ++ | ++ | +|
2013 | ++ | ++ | ++ | +|
2012 | ++ | ++ | ++ | +|
2011 | ++ | ++ | ++ | +|
2010 | ++ | ++ | ++ | +|
2009 | ++ | ++ | ++ | +|
2008 | ++ | ++ | ++ | +|
2007 | ++ | ++ | ++ | +|
2006 | ++ | ++ | ++ | +|
2005 | ++ | ++ | ++ | +|
2004 | ++ | ++ | ++ | +|
2003 | ++ | ++ | ++ | +|
2002 | ++ | ++ | ++ | +|
2001 | ++ | ++ | ++ | +|
2000 | ++ | ++ | ++ | +|
1999 | ++ | ++ | ++ | +|
1998 | ++ | ++ | ++ | +
+ We will study machine learning and AI solutions to real world problems using publicly available datasets. Topics include Deep Learning, Training Neural Networks (NN), Recurrent NN, Convolution NN, Auto-encoders, Generative Models, Natural Language processing (NLP), Reinforcement Learning, Diffusion models, Recommender Systems. +
++ | Spring | +Summer | +Fall | +|
---|---|---|---|---|
+ | (Session 1) | +(Session 2) | ++ | |
2024 | ++ | ++ | ++ | +|
2023 | ++ | ++ | ++ | +|
2022 | ++ | ++ | ++ | +|
2021 | ++ | ++ | ++ | +|
2020 | ++ | ++ | ++ | +|
2019 | ++ | ++ | ++ | +|
2018 | ++ | ++ | ++ | +|
2017 | ++ | ++ | ++ | +|
2016 | ++ | ++ | ++ | +|
2015 | ++ | ++ | ++ | +|
2014 | ++ | ++ | ++ | +|
2013 | ++ | ++ | ++ | +|
2012 | ++ | ++ | ++ | +|
2011 | ++ | ++ | ++ | +|
2010 | ++ | ++ | ++ | +|
2009 | ++ | ++ | ++ | +|
2008 | ++ | ++ | ++ | +|
2007 | ++ | ++ | ++ | +|
2006 | ++ | ++ | ++ | +|
2005 | ++ | ++ | ++ | +|
2004 | ++ | ++ | ++ | +|
2003 | ++ | ++ | ++ | +|
2002 | ++ | ++ | ++ | +|
2001 | ++ | ++ | ++ | +|
2000 | ++ | ++ | ++ | +|
1999 | ++ | ++ | ++ | +|
1998 | ++ | ++ | ++ | +
+ This seminar course introduces students with knowledge of machine learning to modern desiderata for trustworthy machine learning, including alignment, fairness, adversarial robustness, privacy, and their interrelations. Students read, present, and discuss seminal and influential recent papers in the field. The course includes a project component aimed at synthesizing the students’ learning. +
++ | Spring | +Summer | +Fall | +|
---|---|---|---|---|
+ | (Session 1) | +(Session 2) | ++ | |
2024 | ++ | ++ | ++ | +|
2023 | ++ | ++ | ++ | +|
2022 | ++ | ++ | ++ | +|
2021 | ++ | ++ | ++ | +|
2020 | ++ | ++ | ++ | +|
2019 | ++ | ++ | ++ | +|
2018 | ++ | ++ | ++ | +|
2017 | ++ | ++ | ++ | +|
2016 | ++ | ++ | ++ | +|
2015 | ++ | ++ | ++ | +|
2014 | ++ | ++ | ++ | +|
2013 | ++ | ++ | ++ | +|
2012 | ++ | ++ | ++ | +|
2011 | ++ | ++ | ++ | +|
2010 | ++ | ++ | ++ | +|
2009 | ++ | ++ | ++ | +|
2008 | ++ | ++ | ++ | +|
2007 | ++ | ++ | ++ | +|
2006 | ++ | ++ | ++ | +|
2005 | ++ | ++ | ++ | +|
2004 | ++ | ++ | ++ | +|
2003 | ++ | ++ | ++ | +|
2002 | ++ | ++ | ++ | +|
2001 | ++ | ++ | ++ | +|
2000 | ++ | ++ | ++ | +|
1999 | ++ | ++ | ++ | +|
1998 | ++ | ++ | ++ | +
+ Practicum in mentoring new students in Physics with focus on developing Mentor technical leadership skills. Note that this course cannot be applied toward the satisfaction of the Institute Math/Science Core requirement. +
++ | Spring | +Summer | +Fall | +|
---|---|---|---|---|
+ | (Session 1) | +(Session 2) | ++ | |
2024 | ++ | ++ | ++ | +|
2023 | ++ | ++ | ++ | +|
2022 | ++ | ++ | ++ | +|
2021 | ++ | ++ | ++ | +|
2020 | ++ | ++ | ++ | +|
2019 | ++ | ++ | ++ | +|
2018 | ++ | ++ | ++ | +|
2017 | ++ | ++ | ++ | +|
2016 | ++ | ++ | ++ | +|
2015 | ++ | ++ | ++ | +|
2014 | ++ | ++ | ++ | +|
2013 | ++ | ++ | ++ | +|
2012 | ++ | ++ | ++ | +|
2011 | ++ | ++ | ++ | +|
2010 | ++ | ++ | ++ | +|
2009 | ++ | ++ | ++ | +|
2008 | ++ | ++ | ++ | +|
2007 | ++ | ++ | ++ | +|
2006 | ++ | ++ | ++ | +|
2005 | ++ | ++ | ++ | +|
2004 | ++ | ++ | ++ | +|
2003 | ++ | ++ | ++ | +|
2002 | ++ | ++ | ++ | +|
2001 | ++ | ++ | ++ | +|
2000 | ++ | ++ | ++ | +|
1999 | ++ | ++ | ++ | +|
1998 | ++ | ++ | ++ | +