// Released under the MIT licence. // See LICENCE.txt for details. #include "Mixer.h" #include #include #include #include "../../../Attributes.h" #define MIN(a, b) ((a) < (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b)) #define CLAMP(x, y, z) MIN(MAX((x), (y)), (z)) #define LANCZOS_KERNEL_RADIUS 2 struct Mixer_Sound { signed char *samples; size_t frames; size_t position; unsigned short position_subsample; unsigned long advance_delta; // 16.16 fixed-point bool playing; bool looping; short volume; // 8.8 fixed-point short pan_l; // 8.8 fixed-point short pan_r; // 8.8 fixed-point short volume_l; // 8.8 fixed-point short volume_r; // 8.8 fixed-point struct Mixer_Sound *next; }; static Mixer_Sound *sound_list_head; static unsigned long output_frequency; static unsigned short MillibelToScale(long volume) { // Volume is in hundredths of a decibel, from 0 to -10000 volume = CLAMP(volume, -10000, 0); return (unsigned short)(pow(10.0, volume / 2000.0) * 256.0); } void Mixer_Init(unsigned long frequency) { output_frequency = frequency; } Mixer_Sound* Mixer_CreateSound(unsigned int frequency, const unsigned char *samples, size_t length) { Mixer_Sound *sound = (Mixer_Sound*)malloc(sizeof(Mixer_Sound)); if (sound == NULL) return NULL; // Both interpolators will read outside the array's bounds, so allocate some extra room #ifdef LANCZOS_RESAMPLER sound->samples = (signed char*)malloc(LANCZOS_KERNEL_RADIUS - 1 + length + LANCZOS_KERNEL_RADIUS); #else sound->samples = (signed char*)malloc(length + 1); #endif if (sound->samples == NULL) { free(sound); return NULL; } #ifdef LANCZOS_RESAMPLER sound->samples += LANCZOS_KERNEL_RADIUS - 1; #endif for (size_t i = 0; i < length; ++i) sound->samples[i] = samples[i] - 0x80; // Convert from unsigned 8-bit PCM to signed sound->frames = length; sound->playing = false; sound->position = 0; sound->position_subsample = 0; Mixer_SetSoundFrequency(sound, frequency); Mixer_SetSoundVolume(sound, 0); Mixer_SetSoundPan(sound, 0); sound->next = sound_list_head; sound_list_head = sound; return sound; } void Mixer_DestroySound(Mixer_Sound *sound) { for (Mixer_Sound **sound_pointer = &sound_list_head; *sound_pointer != NULL; sound_pointer = &(*sound_pointer)->next) { if (*sound_pointer == sound) { *sound_pointer = sound->next; #ifdef LANCZOS_RESAMPLER sound->samples -= LANCZOS_KERNEL_RADIUS - 1; #endif free(sound->samples); free(sound); break; } } } void Mixer_PlaySound(Mixer_Sound *sound, bool looping) { sound->playing = true; sound->looping = looping; // Fill the out-of-bounds part of the buffer with // either blank samples or repeated samples #ifdef LANCZOS_RESAMPLER if (looping) { for (int i = -LANCZOS_KERNEL_RADIUS + 1; i < 0; ++i) sound->samples[i] = sound->samples[sound->frames + i]; for (int i = 0; i < LANCZOS_KERNEL_RADIUS; ++i) sound->samples[sound->frames + i] = sound->samples[i]; } else { for (int i = -LANCZOS_KERNEL_RADIUS + 1; i < 0; ++i) sound->samples[i] = 0; for (int i = 0; i < LANCZOS_KERNEL_RADIUS; ++i) sound->samples[sound->frames + i] = 0; } #else sound->samples[sound->frames] = looping ? sound->samples[0] : 0; #endif } void Mixer_StopSound(Mixer_Sound *sound) { sound->playing = false; } void Mixer_RewindSound(Mixer_Sound *sound) { sound->position = 0; sound->position_subsample = 0; } void Mixer_SetSoundFrequency(Mixer_Sound *sound, unsigned int frequency) { sound->advance_delta = (frequency << 16) / output_frequency; } void Mixer_SetSoundVolume(Mixer_Sound *sound, long volume) { sound->volume = MillibelToScale(volume); sound->volume_l = (sound->pan_l * sound->volume) >> 8; sound->volume_r = (sound->pan_r * sound->volume) >> 8; } void Mixer_SetSoundPan(Mixer_Sound *sound, long pan) { sound->pan_l = MillibelToScale(-pan); sound->pan_r = MillibelToScale(pan); sound->volume_l = (sound->pan_l * sound->volume) >> 8; sound->volume_r = (sound->pan_r * sound->volume) >> 8; } // Most CPU-intensive function in the game (2/3rd CPU time consumption in my experience), so marked with ATTRIBUTE_HOT so the compiler considers it a hot spot (as it is) when optimizing ATTRIBUTE_HOT void Mixer_MixSounds(long *stream, size_t frames_total) { for (Mixer_Sound *sound = sound_list_head; sound != NULL; sound = sound->next) { if (sound->playing) { long *stream_pointer = stream; for (size_t frames_done = 0; frames_done < frames_total; ++frames_done) { #ifdef LANCZOS_RESAMPLER // Perform Lanczos resampling float output_sample = 0; for (int i = -LANCZOS_KERNEL_RADIUS + 1; i <= LANCZOS_KERNEL_RADIUS; ++i) { const signed char input_sample = sound->samples[sound->position + i]; const float kernel_input = ((float)sound->position_subsample / 0x10000) - i; if (kernel_input == 0.0f) { output_sample += input_sample; } else { const float nx = 3.14159265358979323846f * kernel_input; const float nxa = nx / LANCZOS_KERNEL_RADIUS; output_sample += input_sample * (sin(nx) * sin(nxa) / (nx * nxa)); } } // Mix, and apply volume *stream_pointer++ += (short)(output_sample * sound->volume_l); *stream_pointer++ += (short)(output_sample * sound->volume_r); #else // Perform linear interpolation const unsigned char interpolation_scale = sound->position_subsample >> 8; const signed char output_sample = (sound->samples[sound->position] * (0x100 - interpolation_scale) + sound->samples[sound->position + 1] * interpolation_scale) >> 8; // Mix, and apply volume *stream_pointer++ += output_sample * sound->volume_l; *stream_pointer++ += output_sample * sound->volume_r; #endif // Increment sample const unsigned long next_position_subsample = sound->position_subsample + sound->advance_delta; sound->position += next_position_subsample >> 16; sound->position_subsample = next_position_subsample & 0xFFFF; // Stop or loop sample once it's reached its end if (sound->position >= sound->frames) { if (sound->looping) { sound->position %= sound->frames; } else { sound->playing = false; sound->position = 0; sound->position_subsample = 0; break; } } } } } }