mirror of
https://git.h3cjp.net/H3cJP/yuzu.git
synced 2024-12-15 23:35:38 +00:00
ef24e72b26
Involves making asserts use printf instead of the log functions (log functions are asynchronous and, as such, the log won't be printed in time) As such, the log type argument was removed (printf obviously can't use it, and it's made obsolete by the file and line printing) Also removed some GEKKO cruft.
307 lines
10 KiB
C++
307 lines
10 KiB
C++
// Copyright 2014 Citra Emulator Project
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <map>
|
|
|
|
#include "common/common.h"
|
|
|
|
#include "core/mem_map.h"
|
|
#include "core/hw/hw.h"
|
|
#include "hle/config_mem.h"
|
|
#include "hle/shared_page.h"
|
|
|
|
namespace Memory {
|
|
|
|
static std::map<u32, MemoryBlock> heap_map;
|
|
static std::map<u32, MemoryBlock> heap_linear_map;
|
|
static std::map<u32, MemoryBlock> shared_map;
|
|
|
|
/// Convert a physical address to virtual address
|
|
VAddr PhysicalToVirtualAddress(const PAddr addr) {
|
|
// Our memory interface read/write functions assume virtual addresses. Put any physical address
|
|
// to virtual address translations here. This is quite hacky, but necessary until we implement
|
|
// proper MMU emulation.
|
|
// TODO: Screw it, I'll let bunnei figure out how to do this properly.
|
|
if ((addr >= VRAM_PADDR) && (addr < VRAM_PADDR_END)) {
|
|
return addr - VRAM_PADDR + VRAM_VADDR;
|
|
}else if ((addr >= FCRAM_PADDR) && (addr < FCRAM_PADDR_END)) {
|
|
return addr - FCRAM_PADDR + FCRAM_VADDR;
|
|
}
|
|
|
|
LOG_ERROR(HW_Memory, "Unknown physical address @ 0x%08x", addr);
|
|
return addr;
|
|
}
|
|
|
|
/// Convert a physical address to virtual address
|
|
PAddr VirtualToPhysicalAddress(const VAddr addr) {
|
|
// Our memory interface read/write functions assume virtual addresses. Put any physical address
|
|
// to virtual address translations here. This is quite hacky, but necessary until we implement
|
|
// proper MMU emulation.
|
|
// TODO: Screw it, I'll let bunnei figure out how to do this properly.
|
|
if ((addr >= VRAM_VADDR) && (addr < VRAM_VADDR_END)) {
|
|
return addr - 0x07000000;
|
|
} else if ((addr >= FCRAM_VADDR) && (addr < FCRAM_VADDR_END)) {
|
|
return addr - FCRAM_VADDR + FCRAM_PADDR;
|
|
}
|
|
|
|
LOG_ERROR(HW_Memory, "Unknown virtual address @ 0x%08x", addr);
|
|
return addr;
|
|
}
|
|
|
|
template <typename T>
|
|
inline void Read(T &var, const VAddr vaddr) {
|
|
// TODO: Figure out the fastest order of tests for both read and write (they are probably different).
|
|
// TODO: Make sure this represents the mirrors in a correct way.
|
|
// Could just do a base-relative read, too.... TODO
|
|
|
|
// Kernel memory command buffer
|
|
if (vaddr >= KERNEL_MEMORY_VADDR && vaddr < KERNEL_MEMORY_VADDR_END) {
|
|
var = *((const T*)&g_kernel_mem[vaddr - KERNEL_MEMORY_VADDR]);
|
|
|
|
// ExeFS:/.code is loaded here
|
|
} else if ((vaddr >= EXEFS_CODE_VADDR) && (vaddr < EXEFS_CODE_VADDR_END)) {
|
|
var = *((const T*)&g_exefs_code[vaddr - EXEFS_CODE_VADDR]);
|
|
|
|
// FCRAM - linear heap
|
|
} else if ((vaddr >= HEAP_LINEAR_VADDR) && (vaddr < HEAP_LINEAR_VADDR_END)) {
|
|
var = *((const T*)&g_heap_linear[vaddr - HEAP_LINEAR_VADDR]);
|
|
|
|
// FCRAM - application heap
|
|
} else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) {
|
|
var = *((const T*)&g_heap[vaddr - HEAP_VADDR]);
|
|
|
|
// Shared memory
|
|
} else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) {
|
|
var = *((const T*)&g_shared_mem[vaddr - SHARED_MEMORY_VADDR]);
|
|
|
|
// System memory
|
|
} else if ((vaddr >= SYSTEM_MEMORY_VADDR) && (vaddr < SYSTEM_MEMORY_VADDR_END)) {
|
|
var = *((const T*)&g_system_mem[vaddr - SYSTEM_MEMORY_VADDR]);
|
|
|
|
// Config memory
|
|
} else if ((vaddr >= CONFIG_MEMORY_VADDR) && (vaddr < CONFIG_MEMORY_VADDR_END)) {
|
|
ConfigMem::Read<T>(var, vaddr);
|
|
|
|
// Shared page
|
|
} else if ((vaddr >= SHARED_PAGE_VADDR) && (vaddr < SHARED_PAGE_VADDR_END)) {
|
|
SharedPage::Read<T>(var, vaddr);
|
|
|
|
// DSP memory
|
|
} else if ((vaddr >= DSP_MEMORY_VADDR) && (vaddr < DSP_MEMORY_VADDR_END)) {
|
|
var = *((const T*)&g_dsp_mem[vaddr - DSP_MEMORY_VADDR]);
|
|
|
|
// VRAM
|
|
} else if ((vaddr >= VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) {
|
|
var = *((const T*)&g_vram[vaddr - VRAM_VADDR]);
|
|
|
|
} else {
|
|
LOG_ERROR(HW_Memory, "unknown Read%lu @ 0x%08X", sizeof(var) * 8, vaddr);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
inline void Write(const VAddr vaddr, const T data) {
|
|
|
|
// Kernel memory command buffer
|
|
if (vaddr >= KERNEL_MEMORY_VADDR && vaddr < KERNEL_MEMORY_VADDR_END) {
|
|
*(T*)&g_kernel_mem[vaddr - KERNEL_MEMORY_VADDR] = data;
|
|
|
|
// ExeFS:/.code is loaded here
|
|
} else if ((vaddr >= EXEFS_CODE_VADDR) && (vaddr < EXEFS_CODE_VADDR_END)) {
|
|
*(T*)&g_exefs_code[vaddr - EXEFS_CODE_VADDR] = data;
|
|
|
|
// FCRAM - linear heap
|
|
} else if ((vaddr >= HEAP_LINEAR_VADDR) && (vaddr < HEAP_LINEAR_VADDR_END)) {
|
|
*(T*)&g_heap_linear[vaddr - HEAP_LINEAR_VADDR] = data;
|
|
|
|
// FCRAM - application heap
|
|
} else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) {
|
|
*(T*)&g_heap[vaddr - HEAP_VADDR] = data;
|
|
|
|
// Shared memory
|
|
} else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) {
|
|
*(T*)&g_shared_mem[vaddr - SHARED_MEMORY_VADDR] = data;
|
|
|
|
// System memory
|
|
} else if ((vaddr >= SYSTEM_MEMORY_VADDR) && (vaddr < SYSTEM_MEMORY_VADDR_END)) {
|
|
*(T*)&g_system_mem[vaddr - SYSTEM_MEMORY_VADDR] = data;
|
|
|
|
// VRAM
|
|
} else if ((vaddr >= VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) {
|
|
*(T*)&g_vram[vaddr - VRAM_VADDR] = data;
|
|
|
|
// DSP memory
|
|
} else if ((vaddr >= DSP_MEMORY_VADDR) && (vaddr < DSP_MEMORY_VADDR_END)) {
|
|
*(T*)&g_dsp_mem[vaddr - DSP_MEMORY_VADDR] = data;
|
|
|
|
//} else if ((vaddr & 0xFFFF0000) == 0x1FF80000) {
|
|
// ASSERT_MSG(MEMMAP, false, "umimplemented write to Configuration Memory");
|
|
//} else if ((vaddr & 0xFFFFF000) == 0x1FF81000) {
|
|
// ASSERT_MSG(MEMMAP, false, "umimplemented write to shared page");
|
|
|
|
// Error out...
|
|
} else {
|
|
LOG_ERROR(HW_Memory, "unknown Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32)data, vaddr);
|
|
}
|
|
}
|
|
|
|
u8 *GetPointer(const VAddr vaddr) {
|
|
// Kernel memory command buffer
|
|
if (vaddr >= KERNEL_MEMORY_VADDR && vaddr < KERNEL_MEMORY_VADDR_END) {
|
|
return g_kernel_mem + (vaddr - KERNEL_MEMORY_VADDR);
|
|
|
|
// ExeFS:/.code is loaded here
|
|
} else if ((vaddr >= EXEFS_CODE_VADDR) && (vaddr < EXEFS_CODE_VADDR_END)) {
|
|
return g_exefs_code + (vaddr - EXEFS_CODE_VADDR);
|
|
|
|
// FCRAM - linear heap
|
|
} else if ((vaddr >= HEAP_LINEAR_VADDR) && (vaddr < HEAP_LINEAR_VADDR_END)) {
|
|
return g_heap_linear + (vaddr - HEAP_LINEAR_VADDR);
|
|
|
|
// FCRAM - application heap
|
|
} else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) {
|
|
return g_heap + (vaddr - HEAP_VADDR);
|
|
|
|
// Shared memory
|
|
} else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) {
|
|
return g_shared_mem + (vaddr - SHARED_MEMORY_VADDR);
|
|
|
|
// System memory
|
|
} else if ((vaddr >= SYSTEM_MEMORY_VADDR) && (vaddr < SYSTEM_MEMORY_VADDR_END)) {
|
|
return g_system_mem + (vaddr - SYSTEM_MEMORY_VADDR);
|
|
|
|
// VRAM
|
|
} else if ((vaddr >= VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) {
|
|
return g_vram + (vaddr - VRAM_VADDR);
|
|
|
|
} else {
|
|
LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x%08x", vaddr);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Maps a block of memory on the heap
|
|
* @param size Size of block in bytes
|
|
* @param operation Memory map operation type
|
|
* @param flags Memory allocation flags
|
|
*/
|
|
u32 MapBlock_Heap(u32 size, u32 operation, u32 permissions) {
|
|
MemoryBlock block;
|
|
|
|
block.base_address = HEAP_VADDR;
|
|
block.size = size;
|
|
block.operation = operation;
|
|
block.permissions = permissions;
|
|
|
|
if (heap_map.size() > 0) {
|
|
const MemoryBlock last_block = heap_map.rbegin()->second;
|
|
block.address = last_block.address + last_block.size;
|
|
}
|
|
heap_map[block.GetVirtualAddress()] = block;
|
|
|
|
return block.GetVirtualAddress();
|
|
}
|
|
|
|
/**
|
|
* Maps a block of memory on the linear heap
|
|
* @param size Size of block in bytes
|
|
* @param operation Memory map operation type
|
|
* @param flags Memory allocation flags
|
|
*/
|
|
u32 MapBlock_HeapLinear(u32 size, u32 operation, u32 permissions) {
|
|
MemoryBlock block;
|
|
|
|
block.base_address = HEAP_LINEAR_VADDR;
|
|
block.size = size;
|
|
block.operation = operation;
|
|
block.permissions = permissions;
|
|
|
|
if (heap_linear_map.size() > 0) {
|
|
const MemoryBlock last_block = heap_linear_map.rbegin()->second;
|
|
block.address = last_block.address + last_block.size;
|
|
}
|
|
heap_linear_map[block.GetVirtualAddress()] = block;
|
|
|
|
return block.GetVirtualAddress();
|
|
}
|
|
|
|
u8 Read8(const VAddr addr) {
|
|
u8 data = 0;
|
|
Read<u8>(data, addr);
|
|
return data;
|
|
}
|
|
|
|
u16 Read16(const VAddr addr) {
|
|
u16_le data = 0;
|
|
Read<u16_le>(data, addr);
|
|
|
|
// Check for 16-bit unaligned memory reads...
|
|
if (addr & 1) {
|
|
// TODO(bunnei): Implement 16-bit unaligned memory reads
|
|
LOG_ERROR(HW_Memory, "16-bit unaligned memory reads are not implemented!");
|
|
}
|
|
|
|
return (u16)data;
|
|
}
|
|
|
|
u32 Read32(const VAddr addr) {
|
|
u32_le data = 0;
|
|
Read<u32_le>(data, addr);
|
|
|
|
// Check for 32-bit unaligned memory reads...
|
|
if (addr & 3) {
|
|
// ARM allows for unaligned memory reads, however older ARM architectures read out memory
|
|
// from unaligned addresses in a shifted way. Our ARM CPU core (SkyEye) corrects for this,
|
|
// so therefore expects the memory to be read out in this manner.
|
|
// TODO(bunnei): Determine if this is necessary - perhaps it is OK to remove this from both
|
|
// SkyEye and here?
|
|
int shift = (addr & 3) * 8;
|
|
data = (data << shift) | (data >> (32 - shift));
|
|
}
|
|
return (u32)data;
|
|
}
|
|
|
|
u32 Read8_ZX(const VAddr addr) {
|
|
return (u32)Read8(addr);
|
|
}
|
|
|
|
u32 Read16_ZX(const VAddr addr) {
|
|
return (u32)Read16(addr);
|
|
}
|
|
|
|
void Write8(const VAddr addr, const u8 data) {
|
|
Write<u8>(addr, data);
|
|
}
|
|
|
|
void Write16(const VAddr addr, const u16 data) {
|
|
Write<u16_le>(addr, data);
|
|
}
|
|
|
|
void Write32(const VAddr addr, const u32 data) {
|
|
Write<u32_le>(addr, data);
|
|
}
|
|
|
|
void Write64(const VAddr addr, const u64 data) {
|
|
Write<u64_le>(addr, data);
|
|
}
|
|
|
|
void WriteBlock(const VAddr addr, const u8* data, const size_t size) {
|
|
u32 offset = 0;
|
|
while (offset < (size & ~3)) {
|
|
Write32(addr + offset, *(u32*)&data[offset]);
|
|
offset += 4;
|
|
}
|
|
|
|
if (size & 2) {
|
|
Write16(addr + offset, *(u16*)&data[offset]);
|
|
offset += 2;
|
|
}
|
|
|
|
if (size & 1)
|
|
Write8(addr + offset, data[offset]);
|
|
}
|
|
|
|
} // namespace
|