mirror of
https://git.h3cjp.net/H3cJP/yuzu.git
synced 2024-11-11 13:43:02 +00:00
ebdae19fd2
This makes clang-format useful on those. Also add a bunch of forgotten transitive includes, which otherwise prevented compilation.
87 lines
3.1 KiB
C++
87 lines
3.1 KiB
C++
// Copyright 2016 Citra Emulator Project
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#include "audio_core/interpolate.h"
|
|
#include "common/assert.h"
|
|
#include "common/math_util.h"
|
|
|
|
namespace AudioInterp {
|
|
|
|
// Calculations are done in fixed point with 24 fractional bits.
|
|
// (This is not verified. This was chosen for minimal error.)
|
|
constexpr u64 scale_factor = 1 << 24;
|
|
constexpr u64 scale_mask = scale_factor - 1;
|
|
|
|
/// Here we step over the input in steps of rate_multiplier, until we consume all of the input.
|
|
/// Three adjacent samples are passed to fn each step.
|
|
template <typename Function>
|
|
static StereoBuffer16 StepOverSamples(State& state, const StereoBuffer16& input,
|
|
float rate_multiplier, Function fn) {
|
|
ASSERT(rate_multiplier > 0);
|
|
|
|
if (input.size() < 2)
|
|
return {};
|
|
|
|
StereoBuffer16 output;
|
|
output.reserve(static_cast<size_t>(input.size() / rate_multiplier));
|
|
|
|
u64 step_size = static_cast<u64>(rate_multiplier * scale_factor);
|
|
|
|
u64 fposition = 0;
|
|
const u64 max_fposition = input.size() * scale_factor;
|
|
|
|
while (fposition < 1 * scale_factor) {
|
|
u64 fraction = fposition & scale_mask;
|
|
|
|
output.push_back(fn(fraction, state.xn2, state.xn1, input[0]));
|
|
|
|
fposition += step_size;
|
|
}
|
|
|
|
while (fposition < 2 * scale_factor) {
|
|
u64 fraction = fposition & scale_mask;
|
|
|
|
output.push_back(fn(fraction, state.xn1, input[0], input[1]));
|
|
|
|
fposition += step_size;
|
|
}
|
|
|
|
while (fposition < max_fposition) {
|
|
u64 fraction = fposition & scale_mask;
|
|
|
|
size_t index = static_cast<size_t>(fposition / scale_factor);
|
|
output.push_back(fn(fraction, input[index - 2], input[index - 1], input[index]));
|
|
|
|
fposition += step_size;
|
|
}
|
|
|
|
state.xn2 = input[input.size() - 2];
|
|
state.xn1 = input[input.size() - 1];
|
|
|
|
return output;
|
|
}
|
|
|
|
StereoBuffer16 None(State& state, const StereoBuffer16& input, float rate_multiplier) {
|
|
return StepOverSamples(
|
|
state, input, rate_multiplier,
|
|
[](u64 fraction, const auto& x0, const auto& x1, const auto& x2) { return x0; });
|
|
}
|
|
|
|
StereoBuffer16 Linear(State& state, const StereoBuffer16& input, float rate_multiplier) {
|
|
// Note on accuracy: Some values that this produces are +/- 1 from the actual firmware.
|
|
return StepOverSamples(state, input, rate_multiplier,
|
|
[](u64 fraction, const auto& x0, const auto& x1, const auto& x2) {
|
|
// This is a saturated subtraction. (Verified by black-box fuzzing.)
|
|
s64 delta0 = MathUtil::Clamp<s64>(x1[0] - x0[0], -32768, 32767);
|
|
s64 delta1 = MathUtil::Clamp<s64>(x1[1] - x0[1], -32768, 32767);
|
|
|
|
return std::array<s16, 2>{
|
|
static_cast<s16>(x0[0] + fraction * delta0 / scale_factor),
|
|
static_cast<s16>(x0[1] + fraction * delta1 / scale_factor),
|
|
};
|
|
});
|
|
}
|
|
|
|
} // namespace AudioInterp
|