#pragma once
// This is free and unencumbered software released into the public domain.
// Anyone is free to copy, modify, publish, use, compile, sell, or
// distribute this software, either in source code form or as a compiled
// binary, for any purpose, commercial or non-commercial, and by any
// means.
// In jurisdictions that recognize copyright laws, the author or authors
// of this software dedicate any and all copyright interest in the
// software to the public domain. We make this dedication for the benefit
// of the public at large and to the detriment of our heirs and
// successors. We intend this dedication to be an overt act of
// relinquishment in perpetuity of all present and future rights to this
// software under copyright law.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
// OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// For more information, please refer to <http://unlicense.org/>
//
// ***********************************************************************
//
//
//
//
// Howto:
// Call these functions from your code:
//  MicroProfileOnThreadCreate
//  MicroProfileMouseButton
//  MicroProfileMousePosition
//  MicroProfileModKey
//  MicroProfileFlip                <-- Call this once per frame
//  MicroProfileDraw                <-- Call this once per frame
//  MicroProfileToggleDisplayMode   <-- Bind to a key to toggle profiling
//  MicroProfileTogglePause         <-- Bind to a key to toggle pause
//
// Use these macros in your code in blocks you want to time:
//
//  MICROPROFILE_DECLARE
//  MICROPROFILE_DEFINE
//  MICROPROFILE_DECLARE_GPU
//  MICROPROFILE_DEFINE_GPU
//  MICROPROFILE_SCOPE
//  MICROPROFILE_SCOPEI
//  MICROPROFILE_SCOPEGPU
//  MICROPROFILE_SCOPEGPUI
//  MICROPROFILE_META
//
//
//  Usage:
//
//  {
//      MICROPROFILE_SCOPEI("GroupName", "TimerName", nColorRgb):
//      ..Code to be timed..
//  }
//
//  MICROPROFILE_DECLARE / MICROPROFILE_DEFINE allows defining groups in a shared place, to ensure sorting of the timers
//
//  (in global scope)
//  MICROPROFILE_DEFINE(g_ProfileFisk, "Fisk", "Skalle", nSomeColorRgb);
//
//  (in some other file)
//  MICROPROFILE_DECLARE(g_ProfileFisk);
//
//  void foo(){
//      MICROPROFILE_SCOPE(g_ProfileFisk);
//  }
//
//  Once code is instrumented the gui is activeted by calling MicroProfileToggleDisplayMode or by clicking in the upper left corner of
//  the screen
//
// The following functions must be implemented before the profiler is usable
//  debug render:
//      void MicroProfileDrawText(int nX, int nY, uint32_t nColor, const char* pText, uint32_t nNumCharacters);
//      void MicroProfileDrawBox(int nX, int nY, int nX1, int nY1, uint32_t nColor, MicroProfileBoxType = MicroProfileBoxTypeFlat);
//      void MicroProfileDrawLine2D(uint32_t nVertices, float* pVertices, uint32_t nColor);
//  Gpu time stamps: (See below for d3d/opengl helper)
//      uint32_t MicroProfileGpuInsertTimeStamp();
//      uint64_t MicroProfileGpuGetTimeStamp(uint32_t nKey);
//      uint64_t MicroProfileTicksPerSecondGpu();
//  threading:
//      const char* MicroProfileGetThreadName(); Threadnames in detailed view
//
// Default implementations of Gpu timestamp functions:
//      Opengl:
//          in .c file where MICROPROFILE_IMPL is defined:
//          #define MICROPROFILE_GPU_TIMERS_GL
//          call MicroProfileGpuInitGL() on startup
//      D3D11:
//          in .c file where MICROPROFILE_IMPL is defined:
//          #define MICROPROFILE_GPU_TIMERS_D3D11
//          call MICROPROFILE_GPU_TIMERS_D3D11(). Pass Device & ImmediateContext
//
// Limitations:
//  GPU timestamps can only be inserted from one thread.



#ifndef MICROPROFILE_ENABLED
#define MICROPROFILE_ENABLED 1
#endif

#include <stdint.h>
typedef uint64_t MicroProfileToken;
typedef uint16_t MicroProfileGroupId;

#if 0 == MICROPROFILE_ENABLED

#define MICROPROFILE_DECLARE(var)
#define MICROPROFILE_DEFINE(var, group, name, color)
#define MICROPROFILE_REGISTER_GROUP(group, color, category)
#define MICROPROFILE_DECLARE_GPU(var)
#define MICROPROFILE_DEFINE_GPU(var, name, color)
#define MICROPROFILE_SCOPE(var) do{}while(0)
#define MICROPROFILE_SCOPEI(group, name, color) do{}while(0)
#define MICROPROFILE_SCOPEGPU(var) do{}while(0)
#define MICROPROFILE_SCOPEGPUI( name, color) do{}while(0)
#define MICROPROFILE_META_CPU(name, count)
#define MICROPROFILE_META_GPU(name, count)
#define MICROPROFILE_FORCEENABLECPUGROUP(s) do{} while(0)
#define MICROPROFILE_FORCEDISABLECPUGROUP(s) do{} while(0)
#define MICROPROFILE_FORCEENABLEGPUGROUP(s) do{} while(0)
#define MICROPROFILE_FORCEDISABLEGPUGROUP(s) do{} while(0)
#define MICROPROFILE_SCOPE_TOKEN(token)

#define MicroProfileGetTime(group, name) 0.f
#define MicroProfileOnThreadCreate(foo) do{}while(0)
#define MicroProfileFlip() do{}while(0)
#define MicroProfileSetAggregateFrames(a) do{}while(0)
#define MicroProfileGetAggregateFrames() 0
#define MicroProfileGetCurrentAggregateFrames() 0
#define MicroProfileTogglePause() do{}while(0)
#define MicroProfileToggleAllGroups() do{} while(0)
#define MicroProfileDumpTimers() do{}while(0)
#define MicroProfileShutdown() do{}while(0)
#define MicroProfileSetForceEnable(a) do{} while(0)
#define MicroProfileGetForceEnable() false
#define MicroProfileSetEnableAllGroups(a) do{} while(0)
#define MicroProfileEnableCategory(a) do{} while(0)
#define MicroProfileDisableCategory(a) do{} while(0)
#define MicroProfileGetEnableAllGroups() false
#define MicroProfileSetForceMetaCounters(a)
#define MicroProfileGetForceMetaCounters() 0
#define MicroProfileEnableMetaCounter(c) do{}while(0)
#define MicroProfileDisableMetaCounter(c) do{}while(0)
#define MicroProfileDumpFile(html,csv) do{} while(0)
#define MicroProfileWebServerPort() ((uint32_t)-1)

#else

#include <stdint.h>
#include <string.h>
#include <thread>
#include <mutex>
#include <atomic>

#ifndef MICROPROFILE_API
#define MICROPROFILE_API
#endif

MICROPROFILE_API int64_t MicroProfileTicksPerSecondCpu();


#if defined(__APPLE__)
#include <mach/mach.h>
#include <mach/mach_time.h>
#include <unistd.h>
#include <libkern/OSAtomic.h>
#include <TargetConditionals.h>
#if TARGET_OS_IPHONE
#define MICROPROFILE_IOS
#endif

#define MP_TICK() mach_absolute_time()
inline int64_t MicroProfileTicksPerSecondCpu()
{
    static int64_t nTicksPerSecond = 0;
    if(nTicksPerSecond == 0)
    {
        mach_timebase_info_data_t sTimebaseInfo;
        mach_timebase_info(&sTimebaseInfo);
        nTicksPerSecond = 1000000000ll * sTimebaseInfo.denom / sTimebaseInfo.numer;
    }
    return nTicksPerSecond;
}
inline uint64_t MicroProfileGetCurrentThreadId()
{
    uint64_t tid;
    pthread_threadid_np(pthread_self(), &tid);
    return tid;
}

#define MP_BREAK() __builtin_trap()
#define MP_THREAD_LOCAL __thread
#define MP_STRCASECMP strcasecmp
#define MP_GETCURRENTTHREADID() MicroProfileGetCurrentThreadId()
typedef uint64_t ThreadIdType;
#elif defined(_WIN32)
int64_t MicroProfileGetTick();
#define MP_TICK() MicroProfileGetTick()
#define MP_BREAK() __debugbreak()
#define MP_THREAD_LOCAL thread_local
#define MP_STRCASECMP _stricmp
#define MP_GETCURRENTTHREADID() GetCurrentThreadId()
typedef uint32_t ThreadIdType;

#elif !defined(_WIN32)
#include <unistd.h>
#include <time.h>
inline int64_t MicroProfileTicksPerSecondCpu()
{
    return 1000000000ll;
}

inline int64_t MicroProfileGetTick()
{
    timespec ts;
    clock_gettime(CLOCK_REALTIME, &ts);
    return 1000000000ll * ts.tv_sec + ts.tv_nsec;
}
#define MP_TICK() MicroProfileGetTick()
#define MP_BREAK() __builtin_trap()
#define MP_THREAD_LOCAL __thread
#define MP_STRCASECMP strcasecmp
#define MP_GETCURRENTTHREADID() (uint64_t)pthread_self()
typedef uint64_t ThreadIdType;
#endif


#ifndef MP_GETCURRENTTHREADID
#define MP_GETCURRENTTHREADID() 0
typedef uint32_t ThreadIdType;
#endif


#define MP_ASSERT(a) do{if(!(a)){MP_BREAK();} }while(0)
#define MICROPROFILE_DECLARE(var) extern MicroProfileToken g_mp_##var
#define MICROPROFILE_DEFINE(var, group, name, color) MicroProfileToken g_mp_##var = MicroProfileGetToken(group, name, color, MicroProfileTokenTypeCpu)
#define MICROPROFILE_REGISTER_GROUP(group, category, color) MicroProfileRegisterGroup(group, category, color)
#define MICROPROFILE_DECLARE_GPU(var) extern MicroProfileToken g_mp_##var
#define MICROPROFILE_DEFINE_GPU(var, name, color) MicroProfileToken g_mp_##var = MicroProfileGetToken("GPU", name, color, MicroProfileTokenTypeGpu)
#define MICROPROFILE_TOKEN_PASTE0(a, b) a ## b
#define MICROPROFILE_TOKEN_PASTE(a, b)  MICROPROFILE_TOKEN_PASTE0(a,b)
#define MICROPROFILE_SCOPE(var) MicroProfileScopeHandler MICROPROFILE_TOKEN_PASTE(foo, __LINE__)(g_mp_##var)
#define MICROPROFILE_SCOPE_TOKEN(token) MicroProfileScopeHandler MICROPROFILE_TOKEN_PASTE(foo, __LINE__)(token)
#define MICROPROFILE_SCOPEI(group, name, color) static MicroProfileToken MICROPROFILE_TOKEN_PASTE(g_mp,__LINE__) = MicroProfileGetToken(group, name, color, MicroProfileTokenTypeCpu); MicroProfileScopeHandler MICROPROFILE_TOKEN_PASTE(foo,__LINE__)( MICROPROFILE_TOKEN_PASTE(g_mp,__LINE__))
#define MICROPROFILE_SCOPEGPU(var) MicroProfileScopeGpuHandler MICROPROFILE_TOKEN_PASTE(foo, __LINE__)(g_mp_##var)
#define MICROPROFILE_SCOPEGPUI(name, color) static MicroProfileToken MICROPROFILE_TOKEN_PASTE(g_mp,__LINE__) = MicroProfileGetToken("GPU", name, color,  MicroProfileTokenTypeGpu); MicroProfileScopeGpuHandler MICROPROFILE_TOKEN_PASTE(foo,__LINE__)( MICROPROFILE_TOKEN_PASTE(g_mp,__LINE__))
#define MICROPROFILE_META_CPU(name, count) static MicroProfileToken MICROPROFILE_TOKEN_PASTE(g_mp_meta,__LINE__) = MicroProfileGetMetaToken(name); MicroProfileMetaUpdate(MICROPROFILE_TOKEN_PASTE(g_mp_meta,__LINE__), count, MicroProfileTokenTypeCpu)
#define MICROPROFILE_META_GPU(name, count) static MicroProfileToken MICROPROFILE_TOKEN_PASTE(g_mp_meta,__LINE__) = MicroProfileGetMetaToken(name); MicroProfileMetaUpdate(MICROPROFILE_TOKEN_PASTE(g_mp_meta,__LINE__), count, MicroProfileTokenTypeGpu)


#ifndef MICROPROFILE_USE_THREAD_NAME_CALLBACK
#define MICROPROFILE_USE_THREAD_NAME_CALLBACK 0
#endif

#ifndef MICROPROFILE_PER_THREAD_BUFFER_SIZE
#define MICROPROFILE_PER_THREAD_BUFFER_SIZE (2048<<10)
#endif

#ifndef MICROPROFILE_MAX_FRAME_HISTORY
#define MICROPROFILE_MAX_FRAME_HISTORY 512
#endif

#ifndef MICROPROFILE_PRINTF
#define MICROPROFILE_PRINTF printf
#endif

#ifndef MICROPROFILE_META_MAX
#define MICROPROFILE_META_MAX 8
#endif

#ifndef MICROPROFILE_WEBSERVER_PORT
#define MICROPROFILE_WEBSERVER_PORT 1338
#endif

#ifndef MICROPROFILE_WEBSERVER
#define MICROPROFILE_WEBSERVER 1
#endif

#ifndef MICROPROFILE_WEBSERVER_MAXFRAMES
#define MICROPROFILE_WEBSERVER_MAXFRAMES 30
#endif

#ifndef MICROPROFILE_WEBSERVER_SOCKET_BUFFER_SIZE
#define MICROPROFILE_WEBSERVER_SOCKET_BUFFER_SIZE (16<<10)
#endif

#ifndef MICROPROFILE_GPU_TIMERS
#define MICROPROFILE_GPU_TIMERS 1
#endif

#ifndef MICROPROFILE_GPU_FRAME_DELAY
#define MICROPROFILE_GPU_FRAME_DELAY 3 //must be > 0
#endif


#ifndef MICROPROFILE_NAME_MAX_LEN
#define MICROPROFILE_NAME_MAX_LEN 64
#endif

#define MICROPROFILE_FORCEENABLECPUGROUP(s) MicroProfileForceEnableGroup(s, MicroProfileTokenTypeCpu)
#define MICROPROFILE_FORCEDISABLECPUGROUP(s) MicroProfileForceDisableGroup(s, MicroProfileTokenTypeCpu)
#define MICROPROFILE_FORCEENABLEGPUGROUP(s) MicroProfileForceEnableGroup(s, MicroProfileTokenTypeGpu)
#define MICROPROFILE_FORCEDISABLEGPUGROUP(s) MicroProfileForceDisableGroup(s, MicroProfileTokenTypeGpu)

#define MICROPROFILE_INVALID_TICK ((uint64_t)-1)
#define MICROPROFILE_GROUP_MASK_ALL 0xffffffffffff


#define MICROPROFILE_INVALID_TOKEN (uint64_t)-1

enum MicroProfileTokenType
{
    MicroProfileTokenTypeCpu,
    MicroProfileTokenTypeGpu,
};

enum MicroProfileBoxType
{
    MicroProfileBoxTypeBar,
    MicroProfileBoxTypeFlat,
};



struct MicroProfile;

MICROPROFILE_API void MicroProfileInit();
MICROPROFILE_API void MicroProfileShutdown();
MICROPROFILE_API MicroProfileToken MicroProfileFindToken(const char* sGroup, const char* sName);
MICROPROFILE_API MicroProfileToken MicroProfileGetToken(const char* sGroup, const char* sName, uint32_t nColor, MicroProfileTokenType Token = MicroProfileTokenTypeCpu);
MICROPROFILE_API MicroProfileToken MicroProfileGetMetaToken(const char* pName);
MICROPROFILE_API void MicroProfileMetaUpdate(MicroProfileToken, int nCount, MicroProfileTokenType eTokenType);
MICROPROFILE_API uint64_t MicroProfileEnter(MicroProfileToken nToken);
MICROPROFILE_API void MicroProfileLeave(MicroProfileToken nToken, uint64_t nTick);
MICROPROFILE_API uint64_t MicroProfileGpuEnter(MicroProfileToken nToken);
MICROPROFILE_API void MicroProfileGpuLeave(MicroProfileToken nToken, uint64_t nTick);
inline uint16_t MicroProfileGetTimerIndex(MicroProfileToken t){ return (t&0xffff); }
inline uint64_t MicroProfileGetGroupMask(MicroProfileToken t){ return ((t>>16)&MICROPROFILE_GROUP_MASK_ALL);}
inline MicroProfileToken MicroProfileMakeToken(uint64_t nGroupMask, uint16_t nTimer){ return (nGroupMask<<16) | nTimer;}

MICROPROFILE_API void MicroProfileFlip(); //! call once per frame.
MICROPROFILE_API void MicroProfileTogglePause();
MICROPROFILE_API void MicroProfileForceEnableGroup(const char* pGroup, MicroProfileTokenType Type);
MICROPROFILE_API void MicroProfileForceDisableGroup(const char* pGroup, MicroProfileTokenType Type);
MICROPROFILE_API float MicroProfileGetTime(const char* pGroup, const char* pName);
MICROPROFILE_API void MicroProfileContextSwitchSearch(uint32_t* pContextSwitchStart, uint32_t* pContextSwitchEnd, uint64_t nBaseTicksCpu, uint64_t nBaseTicksEndCpu);
MICROPROFILE_API void MicroProfileOnThreadCreate(const char* pThreadName); //should be called from newly created threads
MICROPROFILE_API void MicroProfileOnThreadExit(); //call on exit to reuse log
MICROPROFILE_API void MicroProfileInitThreadLog();
MICROPROFILE_API void MicroProfileSetForceEnable(bool bForceEnable);
MICROPROFILE_API bool MicroProfileGetForceEnable();
MICROPROFILE_API void MicroProfileSetEnableAllGroups(bool bEnable);
MICROPROFILE_API void MicroProfileEnableCategory(const char* pCategory);
MICROPROFILE_API void MicroProfileDisableCategory(const char* pCategory);
MICROPROFILE_API bool MicroProfileGetEnableAllGroups();
MICROPROFILE_API void MicroProfileSetForceMetaCounters(bool bEnable);
MICROPROFILE_API bool MicroProfileGetForceMetaCounters();
MICROPROFILE_API void MicroProfileEnableMetaCounter(const char* pMet);
MICROPROFILE_API void MicroProfileDisableMetaCounter(const char* pMet);
MICROPROFILE_API void MicroProfileSetAggregateFrames(int frames);
MICROPROFILE_API int MicroProfileGetAggregateFrames();
MICROPROFILE_API int MicroProfileGetCurrentAggregateFrames();
MICROPROFILE_API MicroProfile* MicroProfileGet();
MICROPROFILE_API void MicroProfileGetRange(uint32_t nPut, uint32_t nGet, uint32_t nRange[2][2]);
MICROPROFILE_API std::recursive_mutex& MicroProfileGetMutex();
MICROPROFILE_API void MicroProfileStartContextSwitchTrace();
MICROPROFILE_API void MicroProfileStopContextSwitchTrace();
MICROPROFILE_API bool MicroProfileIsLocalThread(uint32_t nThreadId);


#if MICROPROFILE_WEBSERVER
MICROPROFILE_API void MicroProfileDumpFile(const char* pHtml, const char* pCsv);
MICROPROFILE_API uint32_t MicroProfileWebServerPort();
#else
#define MicroProfileDumpFile(c) do{} while(0)
#define MicroProfileWebServerPort() ((uint32_t)-1)
#endif




#if MICROPROFILE_GPU_TIMERS
MICROPROFILE_API uint32_t MicroProfileGpuInsertTimeStamp();
MICROPROFILE_API uint64_t MicroProfileGpuGetTimeStamp(uint32_t nKey);
MICROPROFILE_API uint64_t MicroProfileTicksPerSecondGpu();
MICROPROFILE_API int MicroProfileGetGpuTickReference(int64_t* pOutCPU, int64_t* pOutGpu);
#else
#define MicroProfileGpuInsertTimeStamp() 1
#define MicroProfileGpuGetTimeStamp(a) 0
#define MicroProfileTicksPerSecondGpu() 1
#define MicroProfileGetGpuTickReference(a,b) 0
#endif

#if MICROPROFILE_GPU_TIMERS_D3D11
#define MICROPROFILE_D3D_MAX_QUERIES (8<<10)
MICROPROFILE_API void MicroProfileGpuInitD3D11(void* pDevice, void* pDeviceContext);
#endif

#if MICROPROFILE_GPU_TIMERS_GL
#define MICROPROFILE_GL_MAX_QUERIES (8<<10)
MICROPROFILE_API void MicroProfileGpuInitGL();
#endif



#if MICROPROFILE_USE_THREAD_NAME_CALLBACK
MICROPROFILE_API const char* MicroProfileGetThreadName();
#else
#define MicroProfileGetThreadName() "<implement MicroProfileGetThreadName to get threadnames>"
#endif

#if !defined(MICROPROFILE_THREAD_NAME_FROM_ID)
#define MICROPROFILE_THREAD_NAME_FROM_ID(a) ""
#endif


struct MicroProfileScopeHandler
{
    MicroProfileToken nToken;
    uint64_t nTick;
    MicroProfileScopeHandler(MicroProfileToken Token):nToken(Token)
    {
        nTick = MicroProfileEnter(nToken);
    }
    ~MicroProfileScopeHandler()
    {
        MicroProfileLeave(nToken, nTick);
    }
};

struct MicroProfileScopeGpuHandler
{
    MicroProfileToken nToken;
    uint64_t nTick;
    MicroProfileScopeGpuHandler(MicroProfileToken Token):nToken(Token)
    {
        nTick = MicroProfileGpuEnter(nToken);
    }
    ~MicroProfileScopeGpuHandler()
    {
        MicroProfileGpuLeave(nToken, nTick);
    }
};



#define MICROPROFILE_MAX_TIMERS 1024
#define MICROPROFILE_MAX_GROUPS 48 //dont bump! no. of bits used it bitmask
#define MICROPROFILE_MAX_CATEGORIES 16
#define MICROPROFILE_MAX_GRAPHS 5
#define MICROPROFILE_GRAPH_HISTORY 128
#define MICROPROFILE_BUFFER_SIZE ((MICROPROFILE_PER_THREAD_BUFFER_SIZE)/sizeof(MicroProfileLogEntry))
#define MICROPROFILE_MAX_CONTEXT_SWITCH_THREADS 256
#define MICROPROFILE_STACK_MAX 32
//#define MICROPROFILE_MAX_PRESETS 5
#define MICROPROFILE_ANIM_DELAY_PRC 0.5f
#define MICROPROFILE_GAP_TIME 50 //extra ms to fetch to close timers from earlier frames


#ifndef MICROPROFILE_MAX_THREADS
#define MICROPROFILE_MAX_THREADS 32
#endif

#ifndef MICROPROFILE_UNPACK_RED
#define MICROPROFILE_UNPACK_RED(c) ((c)>>16)
#endif

#ifndef MICROPROFILE_UNPACK_GREEN
#define MICROPROFILE_UNPACK_GREEN(c) ((c)>>8)
#endif

#ifndef MICROPROFILE_UNPACK_BLUE
#define MICROPROFILE_UNPACK_BLUE(c) ((c))
#endif

#ifndef MICROPROFILE_DEFAULT_PRESET
#define MICROPROFILE_DEFAULT_PRESET "Default"
#endif


#ifndef MICROPROFILE_CONTEXT_SWITCH_TRACE
#if defined(_WIN32)
#define MICROPROFILE_CONTEXT_SWITCH_TRACE 1
#elif defined(__APPLE__)
#define MICROPROFILE_CONTEXT_SWITCH_TRACE 0 //disabled until dtrace script is working.
#else
#define MICROPROFILE_CONTEXT_SWITCH_TRACE 0
#endif
#endif

#if MICROPROFILE_CONTEXT_SWITCH_TRACE
#define MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE (128*1024) //2mb with 16 byte entry size
#else
#define MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE (1)
#endif

#ifndef MICROPROFILE_MINIZ
#define MICROPROFILE_MINIZ 0
#endif

#ifdef _WIN32
#include <basetsd.h>
typedef UINT_PTR MpSocket;
#else
typedef int MpSocket;
#endif


#ifndef _WIN32
typedef pthread_t MicroProfileThread;
#elif defined(_MSC_VER)
typedef HANDLE MicroProfileThread;
#else
typedef std::thread* MicroProfileThread;
#endif



enum MicroProfileDrawMask
{
    MP_DRAW_OFF         = 0x0,
    MP_DRAW_BARS        = 0x1,
    MP_DRAW_DETAILED    = 0x2,
    MP_DRAW_HIDDEN      = 0x3,
};

enum MicroProfileDrawBarsMask
{
    MP_DRAW_TIMERS              = 0x1,
    MP_DRAW_AVERAGE             = 0x2,
    MP_DRAW_MAX                 = 0x4,
    MP_DRAW_CALL_COUNT          = 0x8,
    MP_DRAW_TIMERS_EXCLUSIVE    = 0x10,
    MP_DRAW_AVERAGE_EXCLUSIVE   = 0x20,
    MP_DRAW_MAX_EXCLUSIVE       = 0x40,
    MP_DRAW_META_FIRST          = 0x80,
    MP_DRAW_ALL                 = 0xffffffff,

};

typedef uint64_t MicroProfileLogEntry;

struct MicroProfileTimer
{
    uint64_t nTicks;
    uint32_t nCount;
};

struct MicroProfileCategory
{
    char pName[MICROPROFILE_NAME_MAX_LEN];
    uint64_t nGroupMask;
};

struct MicroProfileGroupInfo
{
    char pName[MICROPROFILE_NAME_MAX_LEN];
    uint32_t nNameLen;
    uint32_t nGroupIndex;
    uint32_t nNumTimers;
    uint32_t nMaxTimerNameLen;
    uint32_t nColor;
    uint32_t nCategory;
    MicroProfileTokenType Type;
};

struct MicroProfileTimerInfo
{
    MicroProfileToken nToken;
    uint32_t nTimerIndex;
    uint32_t nGroupIndex;
    char pName[MICROPROFILE_NAME_MAX_LEN];
    uint32_t nNameLen;
    uint32_t nColor;
    bool bGraph;
};

struct MicroProfileGraphState
{
    int64_t nHistory[MICROPROFILE_GRAPH_HISTORY];
    MicroProfileToken nToken;
    int32_t nKey;
};

struct MicroProfileContextSwitch
{
    ThreadIdType nThreadOut;
    ThreadIdType nThreadIn;
    int64_t nCpu : 8;
    int64_t nTicks : 56;
};


struct MicroProfileFrameState
{
    int64_t nFrameStartCpu;
    int64_t nFrameStartGpu;
    uint32_t nLogStart[MICROPROFILE_MAX_THREADS];
};

struct MicroProfileThreadLog
{
    MicroProfileLogEntry    Log[MICROPROFILE_BUFFER_SIZE];

    std::atomic<uint32_t>   nPut;
    std::atomic<uint32_t>   nGet;
    uint32_t                nActive;
    uint32_t                nGpu;
    ThreadIdType            nThreadId;

    uint32_t                nStack[MICROPROFILE_STACK_MAX];
    int64_t                 nChildTickStack[MICROPROFILE_STACK_MAX];
    uint32_t                nStackPos;


    uint8_t                 nGroupStackPos[MICROPROFILE_MAX_GROUPS];
    int64_t                 nGroupTicks[MICROPROFILE_MAX_GROUPS];
    int64_t                 nAggregateGroupTicks[MICROPROFILE_MAX_GROUPS];
    enum
    {
        THREAD_MAX_LEN = 64,
    };
    char                    ThreadName[64];
    int                     nFreeListNext;
};

#if MICROPROFILE_GPU_TIMERS_D3D11
struct MicroProfileD3D11Frame
{
    uint32_t m_nQueryStart;
    uint32_t m_nQueryCount;
    uint32_t m_nRateQueryStarted;
    void* m_pRateQuery;
};

struct MicroProfileGpuTimerState
{
    uint32_t bInitialized;
    void* m_pDevice;
    void* m_pDeviceContext;
    void* m_pQueries[MICROPROFILE_D3D_MAX_QUERIES];
    int64_t m_nQueryResults[MICROPROFILE_D3D_MAX_QUERIES];
    uint32_t m_nQueryPut;
    uint32_t m_nQueryGet;
    uint32_t m_nQueryFrame;
    int64_t m_nQueryFrequency;
    MicroProfileD3D11Frame m_QueryFrames[MICROPROFILE_GPU_FRAME_DELAY];
};
#elif MICROPROFILE_GPU_TIMERS_GL
struct MicroProfileGpuTimerState
{
    uint32_t GLTimers[MICROPROFILE_GL_MAX_QUERIES];
    uint32_t GLTimerPos;
};
#else
struct MicroProfileGpuTimerState{};
#endif

struct MicroProfile
{
    uint32_t nTotalTimers;
    uint32_t nGroupCount;
    uint32_t nCategoryCount;
    uint32_t nAggregateClear;
    uint32_t nAggregateFlip;
    uint32_t nAggregateFlipCount;
    uint32_t nAggregateFrames;

    uint64_t nAggregateFlipTick;

    uint32_t nDisplay;
    uint32_t nBars;
    uint64_t nActiveGroup;
    uint32_t nActiveBars;

    uint64_t nForceGroup;
    uint32_t nForceEnable;
    uint32_t nForceMetaCounters;

    uint64_t nForceGroupUI;
    uint64_t nActiveGroupWanted;
    uint32_t nAllGroupsWanted;
    uint32_t nAllThreadsWanted;

    uint32_t nOverflow;

    uint64_t nGroupMask;
    uint32_t nRunning;
    uint32_t nToggleRunning;
    uint32_t nMaxGroupSize;
    uint32_t nDumpFileNextFrame;
    uint32_t nAutoClearFrames;
    char HtmlDumpPath[512];
    char CsvDumpPath[512];

    int64_t nPauseTicks;

    float fReferenceTime;
    float fRcpReferenceTime;

    MicroProfileCategory    CategoryInfo[MICROPROFILE_MAX_CATEGORIES];
    MicroProfileGroupInfo   GroupInfo[MICROPROFILE_MAX_GROUPS];
    MicroProfileTimerInfo   TimerInfo[MICROPROFILE_MAX_TIMERS];
    uint8_t                 TimerToGroup[MICROPROFILE_MAX_TIMERS];

    MicroProfileTimer       AccumTimers[MICROPROFILE_MAX_TIMERS];
    uint64_t                AccumMaxTimers[MICROPROFILE_MAX_TIMERS];
    uint64_t                AccumTimersExclusive[MICROPROFILE_MAX_TIMERS];
    uint64_t                AccumMaxTimersExclusive[MICROPROFILE_MAX_TIMERS];

    MicroProfileTimer       Frame[MICROPROFILE_MAX_TIMERS];
    uint64_t                FrameExclusive[MICROPROFILE_MAX_TIMERS];

    MicroProfileTimer       Aggregate[MICROPROFILE_MAX_TIMERS];
    uint64_t                AggregateMax[MICROPROFILE_MAX_TIMERS];
    uint64_t                AggregateExclusive[MICROPROFILE_MAX_TIMERS];
    uint64_t                AggregateMaxExclusive[MICROPROFILE_MAX_TIMERS];


    uint64_t                FrameGroup[MICROPROFILE_MAX_GROUPS];
    uint64_t                AccumGroup[MICROPROFILE_MAX_GROUPS];
    uint64_t                AccumGroupMax[MICROPROFILE_MAX_GROUPS];

    uint64_t                AggregateGroup[MICROPROFILE_MAX_GROUPS];
    uint64_t                AggregateGroupMax[MICROPROFILE_MAX_GROUPS];


    struct
    {
        uint64_t nCounters[MICROPROFILE_MAX_TIMERS];

        uint64_t nAccum[MICROPROFILE_MAX_TIMERS];
        uint64_t nAccumMax[MICROPROFILE_MAX_TIMERS];

        uint64_t nAggregate[MICROPROFILE_MAX_TIMERS];
        uint64_t nAggregateMax[MICROPROFILE_MAX_TIMERS];

        uint64_t nSum;
        uint64_t nSumAccum;
        uint64_t nSumAccumMax;
        uint64_t nSumAggregate;
        uint64_t nSumAggregateMax;

        const char* pName;
    } MetaCounters[MICROPROFILE_META_MAX];

    MicroProfileGraphState  Graph[MICROPROFILE_MAX_GRAPHS];
    uint32_t                nGraphPut;

    uint32_t                nThreadActive[MICROPROFILE_MAX_THREADS];
    MicroProfileThreadLog*  Pool[MICROPROFILE_MAX_THREADS];
    uint32_t                nNumLogs;
    uint32_t                nMemUsage;
    int                     nFreeListHead;

    uint32_t                nFrameCurrent;
    uint32_t                nFrameCurrentIndex;
    uint32_t                nFramePut;
    uint64_t                nFramePutIndex;

    MicroProfileFrameState Frames[MICROPROFILE_MAX_FRAME_HISTORY];

    uint64_t                nFlipTicks;
    uint64_t                nFlipAggregate;
    uint64_t                nFlipMax;
    uint64_t                nFlipAggregateDisplay;
    uint64_t                nFlipMaxDisplay;

    MicroProfileThread          ContextSwitchThread;
    bool                        bContextSwitchRunning;
    bool                        bContextSwitchStop;
    bool                        bContextSwitchAllThreads;
    bool                        bContextSwitchNoBars;
    uint32_t                    nContextSwitchUsage;
    uint32_t                    nContextSwitchLastPut;

    int64_t                     nContextSwitchHoverTickIn;
    int64_t                     nContextSwitchHoverTickOut;
    uint32_t                    nContextSwitchHoverThread;
    uint32_t                    nContextSwitchHoverThreadBefore;
    uint32_t                    nContextSwitchHoverThreadAfter;
    uint8_t                     nContextSwitchHoverCpu;
    uint8_t                     nContextSwitchHoverCpuNext;

    uint32_t                    nContextSwitchPut;
    MicroProfileContextSwitch   ContextSwitch[MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE];


    MpSocket                    ListenerSocket;
    uint32_t                    nWebServerPort;

    char                        WebServerBuffer[MICROPROFILE_WEBSERVER_SOCKET_BUFFER_SIZE];
    uint32_t                    WebServerPut;

    uint64_t                    nWebServerDataSent;

    MicroProfileGpuTimerState   GPU;


};

#define MP_LOG_TICK_MASK  0x0000ffffffffffff
#define MP_LOG_INDEX_MASK 0x3fff000000000000
#define MP_LOG_BEGIN_MASK 0xc000000000000000
#define MP_LOG_GPU_EXTRA 0x3
#define MP_LOG_META 0x2
#define MP_LOG_ENTER 0x1
#define MP_LOG_LEAVE 0x0


inline int MicroProfileLogType(MicroProfileLogEntry Index)
{
    return ((MP_LOG_BEGIN_MASK & Index)>>62) & 0x3;
}

inline uint64_t MicroProfileLogTimerIndex(MicroProfileLogEntry Index)
{
    return (0x3fff&(Index>>48));
}

inline MicroProfileLogEntry MicroProfileMakeLogIndex(uint64_t nBegin, MicroProfileToken nToken, int64_t nTick)
{
    MicroProfileLogEntry Entry =  (nBegin<<62) | ((0x3fff&nToken)<<48) | (MP_LOG_TICK_MASK&nTick);
    int t = MicroProfileLogType(Entry);
    uint64_t nTimerIndex = MicroProfileLogTimerIndex(Entry);
    MP_ASSERT(t == nBegin);
    MP_ASSERT(nTimerIndex == (nToken&0x3fff));
    return Entry;

}

inline int64_t MicroProfileLogTickDifference(MicroProfileLogEntry Start, MicroProfileLogEntry End)
{
    uint64_t nStart = Start;
    uint64_t nEnd = End;
    int64_t nDifference = ((nEnd<<16) - (nStart<<16));
    return nDifference >> 16;
}

inline int64_t MicroProfileLogGetTick(MicroProfileLogEntry e)
{
    return MP_LOG_TICK_MASK & e;
}

inline int64_t MicroProfileLogSetTick(MicroProfileLogEntry e, int64_t nTick)
{
    return (MP_LOG_TICK_MASK & nTick) | (e & ~MP_LOG_TICK_MASK);
}

template<typename T>
T MicroProfileMin(T a, T b)
{ return a < b ? a : b; }

template<typename T>
T MicroProfileMax(T a, T b)
{ return a > b ? a : b; }

inline int64_t MicroProfileMsToTick(float fMs, int64_t nTicksPerSecond)
{
    return (int64_t)(fMs*0.001f*nTicksPerSecond);
}

inline float MicroProfileTickToMsMultiplier(int64_t nTicksPerSecond)
{
    return 1000.f / nTicksPerSecond;
}

inline uint16_t MicroProfileGetGroupIndex(MicroProfileToken t)
{
    return (uint16_t)MicroProfileGet()->TimerToGroup[MicroProfileGetTimerIndex(t)];
}



#ifdef MICROPROFILE_IMPL

#ifdef _WIN32
#include <windows.h>
#define snprintf _snprintf

#pragma warning(push)
#pragma warning(disable: 4244)
int64_t MicroProfileTicksPerSecondCpu()
{
    static int64_t nTicksPerSecond = 0;
    if(nTicksPerSecond == 0)
    {
        QueryPerformanceFrequency((LARGE_INTEGER*)&nTicksPerSecond);
    }
    return nTicksPerSecond;
}
int64_t MicroProfileGetTick()
{
    int64_t ticks;
    QueryPerformanceCounter((LARGE_INTEGER*)&ticks);
    return ticks;
}

#endif

#if defined(MICROPROFILE_WEBSERVER) || defined(MICROPROFILE_CONTEXT_SWITCH_TRACE)


typedef void* (*MicroProfileThreadFunc)(void*);

#ifndef _WIN32
typedef pthread_t MicroProfileThread;
void MicroProfileThreadStart(MicroProfileThread* pThread, MicroProfileThreadFunc Func)
{
    pthread_attr_t Attr;
    int r  = pthread_attr_init(&Attr);
    MP_ASSERT(r == 0);
    pthread_create(pThread, &Attr, Func, 0);
}
void MicroProfileThreadJoin(MicroProfileThread* pThread)
{
    int r = pthread_join(*pThread, 0);
    MP_ASSERT(r == 0);
}
#elif defined(_MSC_VER)
typedef HANDLE MicroProfileThread;
DWORD _stdcall ThreadTrampoline(void* pFunc)
{
    MicroProfileThreadFunc F = (MicroProfileThreadFunc)pFunc;
    return (uint32_t)F(0);
}

void MicroProfileThreadStart(MicroProfileThread* pThread, MicroProfileThreadFunc Func)
{
    *pThread = CreateThread(0, 0, ThreadTrampoline, Func, 0, 0);
}
void MicroProfileThreadJoin(MicroProfileThread* pThread)
{
    WaitForSingleObject(*pThread, INFINITE);
    CloseHandle(*pThread);
}
#else
#include <thread>
typedef std::thread* MicroProfileThread;
inline void MicroProfileThreadStart(MicroProfileThread* pThread, MicroProfileThreadFunc Func)
{
    *pThread = new std::thread(Func, nullptr);
}
inline void MicroProfileThreadJoin(MicroProfileThread* pThread)
{
    (*pThread)->join();
    delete *pThread;
}
#endif
#endif

#if MICROPROFILE_WEBSERVER

#ifdef _WIN32
#define MP_INVALID_SOCKET(f) (f == INVALID_SOCKET)
#endif

#ifndef _WIN32
#include <sys/socket.h>
#include <netinet/in.h>
#include <fcntl.h>
#define MP_INVALID_SOCKET(f) (f < 0)
#endif


void MicroProfileWebServerStart();
void MicroProfileWebServerStop();
bool MicroProfileWebServerUpdate();
void MicroProfileDumpToFile();

#else

#define MicroProfileWebServerStart() do{}while(0)
#define MicroProfileWebServerStop() do{}while(0)
#define MicroProfileWebServerUpdate() false
#define MicroProfileDumpToFile() do{} while(0)
#endif


#if MICROPROFILE_GPU_TIMERS_D3D11
void MicroProfileGpuFlip();
void MicroProfileGpuShutdown();
#else
#define MicroProfileGpuFlip() do{}while(0)
#define MicroProfileGpuShutdown() do{}while(0)
#endif



#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <algorithm>


#ifndef MICROPROFILE_DEBUG
#define MICROPROFILE_DEBUG 0
#endif


#define S g_MicroProfile

MicroProfile g_MicroProfile;
MicroProfileThreadLog*          g_MicroProfileGpuLog = 0;
#ifdef MICROPROFILE_IOS
// iOS doesn't support __thread
static pthread_key_t g_MicroProfileThreadLogKey;
static pthread_once_t g_MicroProfileThreadLogKeyOnce = PTHREAD_ONCE_INIT;
static void MicroProfileCreateThreadLogKey()
{
    pthread_key_create(&g_MicroProfileThreadLogKey, NULL);
}
#else
MP_THREAD_LOCAL MicroProfileThreadLog* g_MicroProfileThreadLog = 0;
#endif
static bool g_bUseLock = false; /// This is used because windows does not support using mutexes under dll init(which is where global initialization is handled)


MICROPROFILE_DEFINE(g_MicroProfileFlip, "MicroProfile", "MicroProfileFlip", 0x3355ee);
MICROPROFILE_DEFINE(g_MicroProfileThreadLoop, "MicroProfile", "ThreadLoop", 0x3355ee);
MICROPROFILE_DEFINE(g_MicroProfileClear, "MicroProfile", "Clear", 0x3355ee);
MICROPROFILE_DEFINE(g_MicroProfileAccumulate, "MicroProfile", "Accumulate", 0x3355ee);
MICROPROFILE_DEFINE(g_MicroProfileContextSwitchSearch,"MicroProfile", "ContextSwitchSearch", 0xDD7300);

inline std::recursive_mutex& MicroProfileMutex()
{
    static std::recursive_mutex Mutex;
    return Mutex;
}
std::recursive_mutex& MicroProfileGetMutex()
{
    return MicroProfileMutex();
}

MICROPROFILE_API MicroProfile* MicroProfileGet()
{
    return &g_MicroProfile;
}


MicroProfileThreadLog* MicroProfileCreateThreadLog(const char* pName);


void MicroProfileInit()
{
    std::recursive_mutex& mutex = MicroProfileMutex();
    bool bUseLock = g_bUseLock;
    if(bUseLock)
        mutex.lock();
    static bool bOnce = true;
    if(bOnce)
    {
        S.nMemUsage += sizeof(S);
        bOnce = false;
        memset(&S, 0, sizeof(S));
        for(int i = 0; i < MICROPROFILE_MAX_GROUPS; ++i)
        {
            S.GroupInfo[i].pName[0] = '\0';
        }
        for(int i = 0; i < MICROPROFILE_MAX_CATEGORIES; ++i)
        {
            S.CategoryInfo[i].pName[0] = '\0';
            S.CategoryInfo[i].nGroupMask = 0;
        }
        strcpy(&S.CategoryInfo[0].pName[0], "default");
        S.nCategoryCount = 1;
        for(int i = 0; i < MICROPROFILE_MAX_TIMERS; ++i)
        {
            S.TimerInfo[i].pName[0] = '\0';
        }
        S.nGroupCount = 0;
        S.nAggregateFlipTick = MP_TICK();
        S.nActiveGroup = 0;
        S.nActiveBars = 0;
        S.nForceGroup = 0;
        S.nAllGroupsWanted = 0;
        S.nActiveGroupWanted = 0;
        S.nAllThreadsWanted = 1;
        S.nAggregateFlip = 0;
        S.nTotalTimers = 0;
        for(uint32_t i = 0; i < MICROPROFILE_MAX_GRAPHS; ++i)
        {
            S.Graph[i].nToken = MICROPROFILE_INVALID_TOKEN;
        }
        S.nRunning = 1;
        S.fReferenceTime = 33.33f;
        S.fRcpReferenceTime = 1.f / S.fReferenceTime;
        S.nFreeListHead = -1;
        int64_t nTick = MP_TICK();
        for(int i = 0; i < MICROPROFILE_MAX_FRAME_HISTORY; ++i)
        {
            S.Frames[i].nFrameStartCpu = nTick;
            S.Frames[i].nFrameStartGpu = -1;
        }

        MicroProfileThreadLog* pGpu = MicroProfileCreateThreadLog("GPU");
        g_MicroProfileGpuLog = pGpu;
        MP_ASSERT(S.Pool[0] == pGpu);
        pGpu->nGpu = 1;
        pGpu->nThreadId = 0;

        S.nWebServerDataSent = (uint64_t)-1;
    }
    if(bUseLock)
        mutex.unlock();
}

void MicroProfileShutdown()
{
    std::lock_guard<std::recursive_mutex> Lock(MicroProfileMutex());
    MicroProfileWebServerStop();
    MicroProfileStopContextSwitchTrace();
    MicroProfileGpuShutdown();
}

#ifdef MICROPROFILE_IOS
inline MicroProfileThreadLog* MicroProfileGetThreadLog()
{
    pthread_once(&g_MicroProfileThreadLogKeyOnce, MicroProfileCreateThreadLogKey);
    return (MicroProfileThreadLog*)pthread_getspecific(g_MicroProfileThreadLogKey);
}

inline void MicroProfileSetThreadLog(MicroProfileThreadLog* pLog)
{
    pthread_once(&g_MicroProfileThreadLogKeyOnce, MicroProfileCreateThreadLogKey);
    pthread_setspecific(g_MicroProfileThreadLogKey, pLog);
}
#else
MicroProfileThreadLog* MicroProfileGetThreadLog()
{
    return g_MicroProfileThreadLog;
}
inline void MicroProfileSetThreadLog(MicroProfileThreadLog* pLog)
{
    g_MicroProfileThreadLog = pLog;
}
#endif


MicroProfileThreadLog* MicroProfileCreateThreadLog(const char* pName)
{
    MicroProfileThreadLog* pLog = 0;
    if(S.nFreeListHead != -1)
    {
        pLog = S.Pool[S.nFreeListHead];
        MP_ASSERT(pLog->nPut.load() == 0);
        MP_ASSERT(pLog->nGet.load() == 0);
        S.nFreeListHead = S.Pool[S.nFreeListHead]->nFreeListNext;
    }
    else
    {
        pLog = new MicroProfileThreadLog;
        S.nMemUsage += sizeof(MicroProfileThreadLog);
        S.Pool[S.nNumLogs++] = pLog;
    }
    memset(pLog, 0, sizeof(*pLog));
    int len = (int)strlen(pName);
    int maxlen = sizeof(pLog->ThreadName)-1;
    len = len < maxlen ? len : maxlen;
    memcpy(&pLog->ThreadName[0], pName, len);
    pLog->ThreadName[len] = '\0';
    pLog->nThreadId = MP_GETCURRENTTHREADID();
    pLog->nFreeListNext = -1;
    pLog->nActive = 1;
    return pLog;
}

void MicroProfileOnThreadCreate(const char* pThreadName)
{
    g_bUseLock = true;
    MicroProfileInit();
    std::lock_guard<std::recursive_mutex> Lock(MicroProfileMutex());
    MP_ASSERT(MicroProfileGetThreadLog() == 0);
    MicroProfileThreadLog* pLog = MicroProfileCreateThreadLog(pThreadName ? pThreadName : MicroProfileGetThreadName());
    MP_ASSERT(pLog);
    MicroProfileSetThreadLog(pLog);
}

void MicroProfileOnThreadExit()
{
    std::lock_guard<std::recursive_mutex> Lock(MicroProfileMutex());
    MicroProfileThreadLog* pLog = MicroProfileGetThreadLog();
    if(pLog)
    {
        int32_t nLogIndex = -1;
        for(int i = 0; i < MICROPROFILE_MAX_THREADS; ++i)
        {
            if(pLog == S.Pool[i])
            {
                nLogIndex = i;
                break;
            }
        }
        MP_ASSERT(nLogIndex < MICROPROFILE_MAX_THREADS && nLogIndex > 0);
        pLog->nFreeListNext = S.nFreeListHead;
        pLog->nActive = 0;
        pLog->nPut.store(0);
        pLog->nGet.store(0);
        S.nFreeListHead = nLogIndex;
        for(int i = 0; i < MICROPROFILE_MAX_FRAME_HISTORY; ++i)
        {
            S.Frames[i].nLogStart[nLogIndex] = 0;
        }
        memset(pLog->nGroupStackPos, 0, sizeof(pLog->nGroupStackPos));
        memset(pLog->nGroupTicks, 0, sizeof(pLog->nGroupTicks));
    }
}

void MicroProfileInitThreadLog()
{
    MicroProfileOnThreadCreate(nullptr);
}


struct MicroProfileScopeLock
{
    bool bUseLock;
    std::recursive_mutex& m;
    MicroProfileScopeLock(std::recursive_mutex& m) : bUseLock(g_bUseLock), m(m)
    {
        if(bUseLock)
            m.lock();
    }
    ~MicroProfileScopeLock()
    {
        if(bUseLock)
            m.unlock();
    }
};

MicroProfileToken MicroProfileFindToken(const char* pGroup, const char* pName)
{
    MicroProfileInit();
    MicroProfileScopeLock L(MicroProfileMutex());
    for(uint32_t i = 0; i < S.nTotalTimers; ++i)
    {
        if(!MP_STRCASECMP(pName, S.TimerInfo[i].pName) && !MP_STRCASECMP(pGroup, S.GroupInfo[S.TimerToGroup[i]].pName))
        {
            return S.TimerInfo[i].nToken;
        }
    }
    return MICROPROFILE_INVALID_TOKEN;
}

uint16_t MicroProfileGetGroup(const char* pGroup, MicroProfileTokenType Type)
{
    for(uint32_t i = 0; i < S.nGroupCount; ++i)
    {
        if(!MP_STRCASECMP(pGroup, S.GroupInfo[i].pName))
        {
            return i;
        }
    }
    uint16_t nGroupIndex = 0xffff;
    uint32_t nLen = (uint32_t)strlen(pGroup);
    if(nLen > MICROPROFILE_NAME_MAX_LEN-1)
        nLen = MICROPROFILE_NAME_MAX_LEN-1;
    memcpy(&S.GroupInfo[S.nGroupCount].pName[0], pGroup, nLen);
    S.GroupInfo[S.nGroupCount].pName[nLen] = '\0';
    S.GroupInfo[S.nGroupCount].nNameLen = nLen;
    S.GroupInfo[S.nGroupCount].nNumTimers = 0;
    S.GroupInfo[S.nGroupCount].nGroupIndex = S.nGroupCount;
    S.GroupInfo[S.nGroupCount].Type = Type;
    S.GroupInfo[S.nGroupCount].nMaxTimerNameLen = 0;
    S.GroupInfo[S.nGroupCount].nColor = 0x88888888;
    S.GroupInfo[S.nGroupCount].nCategory = 0;
    S.CategoryInfo[0].nGroupMask |= (1ll << (uint64_t)S.nGroupCount);
    nGroupIndex = S.nGroupCount++;
    S.nGroupMask = (S.nGroupMask<<1)|1;
    MP_ASSERT(nGroupIndex < MICROPROFILE_MAX_GROUPS);
    return nGroupIndex;
}

void MicroProfileRegisterGroup(const char* pGroup, const char* pCategory, uint32_t nColor)
{
    int nCategoryIndex = -1;
    for(uint32_t i = 0; i < S.nCategoryCount; ++i)
    {
        if(!MP_STRCASECMP(pCategory, S.CategoryInfo[i].pName))
        {
            nCategoryIndex = (int)i;
            break;
        }
    }
    if(-1 == nCategoryIndex && S.nCategoryCount < MICROPROFILE_MAX_CATEGORIES)
    {
        MP_ASSERT(S.CategoryInfo[S.nCategoryCount].pName[0] == '\0');
        nCategoryIndex = (int)S.nCategoryCount++;
        uint32_t nLen = (uint32_t)strlen(pCategory);
        if(nLen > MICROPROFILE_NAME_MAX_LEN-1)
            nLen = MICROPROFILE_NAME_MAX_LEN-1;
        memcpy(&S.CategoryInfo[nCategoryIndex].pName[0], pCategory, nLen);
        S.CategoryInfo[nCategoryIndex].pName[nLen] = '\0';
    }
    uint16_t nGroup = MicroProfileGetGroup(pGroup, 0 != MP_STRCASECMP(pGroup, "gpu")?MicroProfileTokenTypeCpu : MicroProfileTokenTypeGpu);
    S.GroupInfo[nGroup].nColor = nColor;
    if(nCategoryIndex >= 0)
    {
        uint64_t nBit = 1ll << nGroup;
        uint32_t nOldCategory = S.GroupInfo[nGroup].nCategory;
        S.CategoryInfo[nOldCategory].nGroupMask &= ~nBit;
        S.CategoryInfo[nCategoryIndex].nGroupMask |= nBit;
        S.GroupInfo[nGroup].nCategory = nCategoryIndex;
    }
}

MicroProfileToken MicroProfileGetToken(const char* pGroup, const char* pName, uint32_t nColor, MicroProfileTokenType Type)
{
    MicroProfileInit();
    MicroProfileScopeLock L(MicroProfileMutex());
    MicroProfileToken ret = MicroProfileFindToken(pGroup, pName);
    if(ret != MICROPROFILE_INVALID_TOKEN)
        return ret;
    uint16_t nGroupIndex = MicroProfileGetGroup(pGroup, Type);
    uint16_t nTimerIndex = (uint16_t)(S.nTotalTimers++);
    uint64_t nGroupMask = 1ll << nGroupIndex;
    MicroProfileToken nToken = MicroProfileMakeToken(nGroupMask, nTimerIndex);
    S.GroupInfo[nGroupIndex].nNumTimers++;
    S.GroupInfo[nGroupIndex].nMaxTimerNameLen = MicroProfileMax(S.GroupInfo[nGroupIndex].nMaxTimerNameLen, (uint32_t)strlen(pName));
    MP_ASSERT(S.GroupInfo[nGroupIndex].Type == Type); //dont mix cpu & gpu timers in the same group
    S.nMaxGroupSize = MicroProfileMax(S.nMaxGroupSize, S.GroupInfo[nGroupIndex].nNumTimers);
    S.TimerInfo[nTimerIndex].nToken = nToken;
    uint32_t nLen = (uint32_t)strlen(pName);
    if(nLen > MICROPROFILE_NAME_MAX_LEN-1)
        nLen = MICROPROFILE_NAME_MAX_LEN-1;
    memcpy(&S.TimerInfo[nTimerIndex].pName, pName, nLen);
    S.TimerInfo[nTimerIndex].pName[nLen] = '\0';
    S.TimerInfo[nTimerIndex].nNameLen = nLen;
    S.TimerInfo[nTimerIndex].nColor = nColor&0xffffff;
    S.TimerInfo[nTimerIndex].nGroupIndex = nGroupIndex;
    S.TimerInfo[nTimerIndex].nTimerIndex = nTimerIndex;
    S.TimerToGroup[nTimerIndex] = nGroupIndex;
    return nToken;
}

MicroProfileToken MicroProfileGetMetaToken(const char* pName)
{
    MicroProfileInit();
    MicroProfileScopeLock L(MicroProfileMutex());
    for(uint32_t i = 0; i < MICROPROFILE_META_MAX; ++i)
    {
        if(!S.MetaCounters[i].pName)
        {
            S.MetaCounters[i].pName = pName;
            return i;
        }
        else if(!MP_STRCASECMP(pName, S.MetaCounters[i].pName))
        {
            return i;
        }
    }
    MP_ASSERT(0);//out of slots, increase MICROPROFILE_META_MAX
    return (MicroProfileToken)-1;
}


inline void MicroProfileLogPut(MicroProfileToken nToken_, uint64_t nTick, uint64_t nBegin, MicroProfileThreadLog* pLog)
{
    MP_ASSERT(pLog != 0); //this assert is hit if MicroProfileOnCreateThread is not called
    MP_ASSERT(pLog->nActive);
    uint32_t nPos = pLog->nPut.load(std::memory_order_relaxed);
    uint32_t nNextPos = (nPos+1) % MICROPROFILE_BUFFER_SIZE;
    if(nNextPos == pLog->nGet.load(std::memory_order_relaxed))
    {
        S.nOverflow = 100;
    }
    else
    {
        pLog->Log[nPos] = MicroProfileMakeLogIndex(nBegin, nToken_, nTick);
        pLog->nPut.store(nNextPos, std::memory_order_release);
    }
}

uint64_t MicroProfileEnter(MicroProfileToken nToken_)
{
    if(MicroProfileGetGroupMask(nToken_) & S.nActiveGroup)
    {
        if(!MicroProfileGetThreadLog())
        {
            MicroProfileInitThreadLog();
        }
        uint64_t nTick = MP_TICK();
        MicroProfileLogPut(nToken_, nTick, MP_LOG_ENTER, MicroProfileGetThreadLog());
        return nTick;
    }
    return MICROPROFILE_INVALID_TICK;
}

void MicroProfileMetaUpdate(MicroProfileToken nToken, int nCount, MicroProfileTokenType eTokenType)
{
    if((MP_DRAW_META_FIRST<<nToken) & S.nActiveBars)
    {
        MicroProfileThreadLog* pLog = MicroProfileTokenTypeCpu == eTokenType ? MicroProfileGetThreadLog() : g_MicroProfileGpuLog;
        if(pLog)
        {
            MP_ASSERT(nToken < MICROPROFILE_META_MAX);
            MicroProfileLogPut(nToken, nCount, MP_LOG_META, pLog);
        }
    }
}


void MicroProfileLeave(MicroProfileToken nToken_, uint64_t nTickStart)
{
    if(MICROPROFILE_INVALID_TICK != nTickStart)
    {
        if(!MicroProfileGetThreadLog())
        {
            MicroProfileInitThreadLog();
        }
        uint64_t nTick = MP_TICK();
        MicroProfileThreadLog* pLog = MicroProfileGetThreadLog();
        MicroProfileLogPut(nToken_, nTick, MP_LOG_LEAVE, pLog);
    }
}


uint64_t MicroProfileGpuEnter(MicroProfileToken nToken_)
{
    if(MicroProfileGetGroupMask(nToken_) & S.nActiveGroup)
    {
        uint64_t nTimer = MicroProfileGpuInsertTimeStamp();
        MicroProfileLogPut(nToken_, nTimer, MP_LOG_ENTER, g_MicroProfileGpuLog);
        MicroProfileLogPut(nToken_, MP_TICK(), MP_LOG_GPU_EXTRA, g_MicroProfileGpuLog);
        return 1;
    }
    return 0;
}

void MicroProfileGpuLeave(MicroProfileToken nToken_, uint64_t nTickStart)
{
    if(nTickStart)
    {
        uint64_t nTimer = MicroProfileGpuInsertTimeStamp();
        MicroProfileLogPut(nToken_, nTimer, MP_LOG_LEAVE, g_MicroProfileGpuLog);
        MicroProfileLogPut(nToken_, MP_TICK(), MP_LOG_GPU_EXTRA, g_MicroProfileGpuLog);
    }
}

void MicroProfileContextSwitchPut(MicroProfileContextSwitch* pContextSwitch)
{
    if(S.nRunning || pContextSwitch->nTicks <= S.nPauseTicks)
    {
        uint32_t nPut = S.nContextSwitchPut;
        S.ContextSwitch[nPut] = *pContextSwitch;
        S.nContextSwitchPut = (S.nContextSwitchPut+1) % MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE;
    }
}


void MicroProfileGetRange(uint32_t nPut, uint32_t nGet, uint32_t nRange[2][2])
{
    if(nPut > nGet)
    {
        nRange[0][0] = nGet;
        nRange[0][1] = nPut;
        nRange[1][0] = nRange[1][1] = 0;
    }
    else if(nPut != nGet)
    {
        MP_ASSERT(nGet != MICROPROFILE_BUFFER_SIZE);
        uint32_t nCountEnd = MICROPROFILE_BUFFER_SIZE - nGet;
        nRange[0][0] = nGet;
        nRange[0][1] = nGet + nCountEnd;
        nRange[1][0] = 0;
        nRange[1][1] = nPut;
    }
}

void MicroProfileFlip()
{
    #if 0
    //verify LogEntry wraps correctly
    MicroProfileLogEntry c = MP_LOG_TICK_MASK-5000;
    for(int i = 0; i < 10000; ++i, c += 1)
    {
        MicroProfileLogEntry l2 = (c+2500) & MP_LOG_TICK_MASK;
        MP_ASSERT(2500 == MicroProfileLogTickDifference(c, l2));
    }
    #endif
    MICROPROFILE_SCOPE(g_MicroProfileFlip);
    std::lock_guard<std::recursive_mutex> Lock(MicroProfileMutex());


    MicroProfileGpuFlip();

    if(S.nToggleRunning)
    {
        S.nRunning = !S.nRunning;
        if(!S.nRunning)
            S.nPauseTicks = MP_TICK();
        S.nToggleRunning = 0;
        for(uint32_t i = 0; i < MICROPROFILE_MAX_THREADS; ++i)
        {
            MicroProfileThreadLog* pLog = S.Pool[i];
            if(pLog)
            {
                pLog->nStackPos = 0;
            }
        }
    }
    uint32_t nAggregateClear = S.nAggregateClear || S.nAutoClearFrames, nAggregateFlip = 0;
    if(S.nDumpFileNextFrame)
    {
        MicroProfileDumpToFile();
        S.nDumpFileNextFrame = 0;
        S.nAutoClearFrames = MICROPROFILE_GPU_FRAME_DELAY + 3; //hide spike from dumping webpage
    }
    if(S.nWebServerDataSent == (uint64_t)-1)
    {
        MicroProfileWebServerStart();
        S.nWebServerDataSent = 0;
    }

    if(MicroProfileWebServerUpdate())
    {
        S.nAutoClearFrames = MICROPROFILE_GPU_FRAME_DELAY + 3; //hide spike from dumping webpage
    }

    if(S.nAutoClearFrames)
    {
        nAggregateClear = 1;
        nAggregateFlip = 1;
        S.nAutoClearFrames -= 1;
    }


    if(S.nRunning || S.nForceEnable)
    {
        S.nFramePutIndex++;
        S.nFramePut = (S.nFramePut+1) % MICROPROFILE_MAX_FRAME_HISTORY;
        MP_ASSERT((S.nFramePutIndex % MICROPROFILE_MAX_FRAME_HISTORY) == S.nFramePut);
        S.nFrameCurrent = (S.nFramePut + MICROPROFILE_MAX_FRAME_HISTORY - MICROPROFILE_GPU_FRAME_DELAY - 1) % MICROPROFILE_MAX_FRAME_HISTORY;
        S.nFrameCurrentIndex++;
        uint32_t nFrameNext = (S.nFrameCurrent+1) % MICROPROFILE_MAX_FRAME_HISTORY;

        uint32_t nContextSwitchPut = S.nContextSwitchPut;
        if(S.nContextSwitchLastPut < nContextSwitchPut)
        {
            S.nContextSwitchUsage = (nContextSwitchPut - S.nContextSwitchLastPut);
        }
        else
        {
            S.nContextSwitchUsage = MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE - S.nContextSwitchLastPut + nContextSwitchPut;
        }
        S.nContextSwitchLastPut = nContextSwitchPut;

        MicroProfileFrameState* pFramePut = &S.Frames[S.nFramePut];
        MicroProfileFrameState* pFrameCurrent = &S.Frames[S.nFrameCurrent];
        MicroProfileFrameState* pFrameNext = &S.Frames[nFrameNext];

        pFramePut->nFrameStartCpu = MP_TICK();
        pFramePut->nFrameStartGpu = (uint32_t)MicroProfileGpuInsertTimeStamp();
        if(pFrameNext->nFrameStartGpu != (uint64_t)-1)
            pFrameNext->nFrameStartGpu = MicroProfileGpuGetTimeStamp((uint32_t)pFrameNext->nFrameStartGpu);

        if(pFrameCurrent->nFrameStartGpu == (uint64_t)-1)
            pFrameCurrent->nFrameStartGpu = pFrameNext->nFrameStartGpu + 1;

        uint64_t nFrameStartCpu = pFrameCurrent->nFrameStartCpu;
        uint64_t nFrameEndCpu = pFrameNext->nFrameStartCpu;

        {
            uint64_t nTick = nFrameEndCpu - nFrameStartCpu;
            S.nFlipTicks = nTick;
            S.nFlipAggregate += nTick;
            S.nFlipMax = MicroProfileMax(S.nFlipMax, nTick);
        }

        uint8_t* pTimerToGroup = &S.TimerToGroup[0];
        for(uint32_t i = 0; i < MICROPROFILE_MAX_THREADS; ++i)
        {
            MicroProfileThreadLog* pLog = S.Pool[i];
            if(!pLog)
            {
                pFramePut->nLogStart[i] = 0;
            }
            else
            {
                uint32_t nPut = pLog->nPut.load(std::memory_order_acquire);
                pFramePut->nLogStart[i] = nPut;
                MP_ASSERT(nPut< MICROPROFILE_BUFFER_SIZE);
                //need to keep last frame around to close timers. timers more than 1 frame old is ditched.
                pLog->nGet.store(nPut, std::memory_order_relaxed);
            }
        }

        if(S.nRunning)
        {
            uint64_t* pFrameGroup = &S.FrameGroup[0];
            {
                MICROPROFILE_SCOPE(g_MicroProfileClear);
                for(uint32_t i = 0; i < S.nTotalTimers; ++i)
                {
                    S.Frame[i].nTicks = 0;
                    S.Frame[i].nCount = 0;
                    S.FrameExclusive[i] = 0;
                }
                for(uint32_t i = 0; i < MICROPROFILE_MAX_GROUPS; ++i)
                {
                    pFrameGroup[i] = 0;
                }
                for(uint32_t j = 0; j < MICROPROFILE_META_MAX; ++j)
                {
                    if(S.MetaCounters[j].pName && 0 != (S.nActiveBars & (MP_DRAW_META_FIRST<<j)))
                    {
                        auto& Meta = S.MetaCounters[j];
                        for(uint32_t i = 0; i < S.nTotalTimers; ++i)
                        {
                            Meta.nCounters[i] = 0;
                        }
                    }
                }

            }
            {
                MICROPROFILE_SCOPE(g_MicroProfileThreadLoop);
                for(uint32_t i = 0; i < MICROPROFILE_MAX_THREADS; ++i)
                {
                    MicroProfileThreadLog* pLog = S.Pool[i];
                    if(!pLog)
                        continue;

                    uint8_t* pGroupStackPos = &pLog->nGroupStackPos[0];
                    int64_t nGroupTicks[MICROPROFILE_MAX_GROUPS] = {0};


                    uint32_t nPut = pFrameNext->nLogStart[i];
                    uint32_t nGet = pFrameCurrent->nLogStart[i];
                    uint32_t nRange[2][2] = { {0, 0}, {0, 0}, };
                    MicroProfileGetRange(nPut, nGet, nRange);


                    //fetch gpu results.
                    if(pLog->nGpu)
                    {
                        for(uint32_t j = 0; j < 2; ++j)
                        {
                            uint32_t nStart = nRange[j][0];
                            uint32_t nEnd = nRange[j][1];
                            for(uint32_t k = nStart; k < nEnd; ++k)
                            {
                                MicroProfileLogEntry L = pLog->Log[k];
                                if(MicroProfileLogType(L) < MP_LOG_META)
                                {
                                    pLog->Log[k] = MicroProfileLogSetTick(L, MicroProfileGpuGetTimeStamp((uint32_t)MicroProfileLogGetTick(L)));
                                }
                            }
                        }
                    }


                    uint32_t* pStack = &pLog->nStack[0];
                    int64_t* pChildTickStack = &pLog->nChildTickStack[0];
                    uint32_t nStackPos = pLog->nStackPos;

                    for(uint32_t j = 0; j < 2; ++j)
                    {
                        uint32_t nStart = nRange[j][0];
                        uint32_t nEnd = nRange[j][1];
                        for(uint32_t k = nStart; k < nEnd; ++k)
                        {
                            MicroProfileLogEntry LE = pLog->Log[k];
                            int nType = MicroProfileLogType(LE);

                            if(MP_LOG_ENTER == nType)
                            {
                                int nTimer = MicroProfileLogTimerIndex(LE);
                                uint8_t nGroup = pTimerToGroup[nTimer];
                                MP_ASSERT(nStackPos < MICROPROFILE_STACK_MAX);
                                MP_ASSERT(nGroup < MICROPROFILE_MAX_GROUPS);
                                pGroupStackPos[nGroup]++;
                                pStack[nStackPos++] = k;
                                pChildTickStack[nStackPos] = 0;

                            }
                            else if(MP_LOG_META == nType)
                            {
                                if(nStackPos)
                                {
                                    int64_t nMetaIndex = MicroProfileLogTimerIndex(LE);
                                    int64_t nMetaCount = MicroProfileLogGetTick(LE);
                                    MP_ASSERT(nMetaIndex < MICROPROFILE_META_MAX);
                                    int64_t nCounter = MicroProfileLogTimerIndex(pLog->Log[pStack[nStackPos-1]]);
                                    S.MetaCounters[nMetaIndex].nCounters[nCounter] += nMetaCount;
                                }
                            }
                            else if(MP_LOG_LEAVE == nType)
                            {
                                int nTimer = MicroProfileLogTimerIndex(LE);
                                uint8_t nGroup = pTimerToGroup[nTimer];
                                MP_ASSERT(nGroup < MICROPROFILE_MAX_GROUPS);
                                if(nStackPos)
                                {
                                    int64_t nTickStart = pLog->Log[pStack[nStackPos-1]];
                                    int64_t nTicks = MicroProfileLogTickDifference(nTickStart, LE);
                                    int64_t nChildTicks = pChildTickStack[nStackPos];
                                    nStackPos--;
                                    pChildTickStack[nStackPos] += nTicks;

                                    uint32_t nTimerIndex = MicroProfileLogTimerIndex(LE);
                                    S.Frame[nTimerIndex].nTicks += nTicks;
                                    S.FrameExclusive[nTimerIndex] += (nTicks-nChildTicks);
                                    S.Frame[nTimerIndex].nCount += 1;

                                    MP_ASSERT(nGroup < MICROPROFILE_MAX_GROUPS);
                                    uint8_t nGroupStackPos = pGroupStackPos[nGroup];
                                    if(nGroupStackPos)
                                    {
                                        nGroupStackPos--;
                                        if(0 == nGroupStackPos)
                                        {
                                            nGroupTicks[nGroup] += nTicks;
                                        }
                                        pGroupStackPos[nGroup] = nGroupStackPos;
                                    }
                                }
                            }
                        }
                    }
                    for(uint32_t i = 0; i < MICROPROFILE_MAX_GROUPS; ++i)
                    {
                        pLog->nGroupTicks[i] += nGroupTicks[i];
                        pFrameGroup[i] += nGroupTicks[i];
                    }
                    pLog->nStackPos = nStackPos;
                }
            }
            {
                MICROPROFILE_SCOPE(g_MicroProfileAccumulate);
                for(uint32_t i = 0; i < S.nTotalTimers; ++i)
                {
                    S.AccumTimers[i].nTicks += S.Frame[i].nTicks;
                    S.AccumTimers[i].nCount += S.Frame[i].nCount;
                    S.AccumMaxTimers[i] = MicroProfileMax(S.AccumMaxTimers[i], S.Frame[i].nTicks);
                    S.AccumTimersExclusive[i] += S.FrameExclusive[i];
                    S.AccumMaxTimersExclusive[i] = MicroProfileMax(S.AccumMaxTimersExclusive[i], S.FrameExclusive[i]);
                }

                for(uint32_t i = 0; i < MICROPROFILE_MAX_GROUPS; ++i)
                {
                    S.AccumGroup[i] += pFrameGroup[i];
                    S.AccumGroupMax[i] = MicroProfileMax(S.AccumGroupMax[i], pFrameGroup[i]);
                }

                for(uint32_t j = 0; j < MICROPROFILE_META_MAX; ++j)
                {
                    if(S.MetaCounters[j].pName && 0 != (S.nActiveBars & (MP_DRAW_META_FIRST<<j)))
                    {
                        auto& Meta = S.MetaCounters[j];
                        uint64_t nSum = 0;;
                        for(uint32_t i = 0; i < S.nTotalTimers; ++i)
                        {
                            uint64_t nCounter = Meta.nCounters[i];
                            Meta.nAccumMax[i] = MicroProfileMax(Meta.nAccumMax[i], nCounter);
                            Meta.nAccum[i] += nCounter;
                            nSum += nCounter;
                        }
                        Meta.nSumAccum += nSum;
                        Meta.nSumAccumMax = MicroProfileMax(Meta.nSumAccumMax, nSum);
                    }
                }
            }
            for(uint32_t i = 0; i < MICROPROFILE_MAX_GRAPHS; ++i)
            {
                if(S.Graph[i].nToken != MICROPROFILE_INVALID_TOKEN)
                {
                    MicroProfileToken nToken = S.Graph[i].nToken;
                    S.Graph[i].nHistory[S.nGraphPut] = S.Frame[MicroProfileGetTimerIndex(nToken)].nTicks;
                }
            }
            S.nGraphPut = (S.nGraphPut+1) % MICROPROFILE_GRAPH_HISTORY;

        }


        if(S.nRunning && S.nAggregateFlip <= ++S.nAggregateFlipCount)
        {
            nAggregateFlip = 1;
            if(S.nAggregateFlip) // if 0 accumulate indefinitely
            {
                nAggregateClear = 1;
            }
        }
    }
    if(nAggregateFlip)
    {
        memcpy(&S.Aggregate[0], &S.AccumTimers[0], sizeof(S.Aggregate[0]) * S.nTotalTimers);
        memcpy(&S.AggregateMax[0], &S.AccumMaxTimers[0], sizeof(S.AggregateMax[0]) * S.nTotalTimers);
        memcpy(&S.AggregateExclusive[0], &S.AccumTimersExclusive[0], sizeof(S.AggregateExclusive[0]) * S.nTotalTimers);
        memcpy(&S.AggregateMaxExclusive[0], &S.AccumMaxTimersExclusive[0], sizeof(S.AggregateMaxExclusive[0]) * S.nTotalTimers);

        memcpy(&S.AggregateGroup[0], &S.AccumGroup[0], sizeof(S.AggregateGroup));
        memcpy(&S.AggregateGroupMax[0], &S.AccumGroupMax[0], sizeof(S.AggregateGroup));

        for(uint32_t i = 0; i < MICROPROFILE_MAX_THREADS; ++i)
        {
            MicroProfileThreadLog* pLog = S.Pool[i];
            if(!pLog)
                continue;

            memcpy(&pLog->nAggregateGroupTicks[0], &pLog->nGroupTicks[0], sizeof(pLog->nAggregateGroupTicks));

            if(nAggregateClear)
            {
                memset(&pLog->nGroupTicks[0], 0, sizeof(pLog->nGroupTicks));
            }
        }

        for(uint32_t j = 0; j < MICROPROFILE_META_MAX; ++j)
        {
            if(S.MetaCounters[j].pName && 0 != (S.nActiveBars & (MP_DRAW_META_FIRST<<j)))
            {
                auto& Meta = S.MetaCounters[j];
                memcpy(&Meta.nAggregateMax[0], &Meta.nAccumMax[0], sizeof(Meta.nAggregateMax[0]) * S.nTotalTimers);
                memcpy(&Meta.nAggregate[0], &Meta.nAccum[0], sizeof(Meta.nAggregate[0]) * S.nTotalTimers);
                Meta.nSumAggregate = Meta.nSumAccum;
                Meta.nSumAggregateMax = Meta.nSumAccumMax;
                if(nAggregateClear)
                {
                    memset(&Meta.nAccumMax[0], 0, sizeof(Meta.nAccumMax[0]) * S.nTotalTimers);
                    memset(&Meta.nAccum[0], 0, sizeof(Meta.nAccum[0]) * S.nTotalTimers);
                    Meta.nSumAccum = 0;
                    Meta.nSumAccumMax = 0;
                }
            }
        }





        S.nAggregateFrames = S.nAggregateFlipCount;
        S.nFlipAggregateDisplay = S.nFlipAggregate;
        S.nFlipMaxDisplay = S.nFlipMax;
        if(nAggregateClear)
        {
            memset(&S.AccumTimers[0], 0, sizeof(S.Aggregate[0]) * S.nTotalTimers);
            memset(&S.AccumMaxTimers[0], 0, sizeof(S.AccumMaxTimers[0]) * S.nTotalTimers);
            memset(&S.AccumTimersExclusive[0], 0, sizeof(S.AggregateExclusive[0]) * S.nTotalTimers);
            memset(&S.AccumMaxTimersExclusive[0], 0, sizeof(S.AccumMaxTimersExclusive[0]) * S.nTotalTimers);
            memset(&S.AccumGroup[0], 0, sizeof(S.AggregateGroup));
            memset(&S.AccumGroupMax[0], 0, sizeof(S.AggregateGroup));

            S.nAggregateFlipCount = 0;
            S.nFlipAggregate = 0;
            S.nFlipMax = 0;

            S.nAggregateFlipTick = MP_TICK();
        }
    }
    S.nAggregateClear = 0;

    uint64_t nNewActiveGroup = 0;
    if(S.nForceEnable || (S.nDisplay && S.nRunning))
        nNewActiveGroup = S.nAllGroupsWanted ? S.nGroupMask : S.nActiveGroupWanted;
    nNewActiveGroup |= S.nForceGroup;
    nNewActiveGroup |= S.nForceGroupUI;
    if(S.nActiveGroup != nNewActiveGroup)
        S.nActiveGroup = nNewActiveGroup;
    uint32_t nNewActiveBars = 0;
    if(S.nDisplay && S.nRunning)
        nNewActiveBars = S.nBars;
    if(S.nForceMetaCounters)
    {
        for(int i = 0; i < MICROPROFILE_META_MAX; ++i)
        {
            if(S.MetaCounters[i].pName)
            {
                nNewActiveBars |= (MP_DRAW_META_FIRST<<i);
            }
        }
    }
    if(nNewActiveBars != S.nActiveBars)
        S.nActiveBars = nNewActiveBars;
}

void MicroProfileSetForceEnable(bool bEnable)
{
    S.nForceEnable = bEnable ? 1 : 0;
}
bool MicroProfileGetForceEnable()
{
    return S.nForceEnable != 0;
}

void MicroProfileSetEnableAllGroups(bool bEnableAllGroups)
{
    S.nAllGroupsWanted = bEnableAllGroups ? 1 : 0;
}

void MicroProfileEnableCategory(const char* pCategory, bool bEnabled)
{
    int nCategoryIndex = -1;
    for(uint32_t i = 0; i < S.nCategoryCount; ++i)
    {
        if(!MP_STRCASECMP(pCategory, S.CategoryInfo[i].pName))
        {
            nCategoryIndex = (int)i;
            break;
        }
    }
    if(nCategoryIndex >= 0)
    {
        if(bEnabled)
        {
            S.nActiveGroupWanted |= S.CategoryInfo[nCategoryIndex].nGroupMask;
        }
        else
        {
            S.nActiveGroupWanted &= ~S.CategoryInfo[nCategoryIndex].nGroupMask;
        }
    }
}


void MicroProfileEnableCategory(const char* pCategory)
{
    MicroProfileEnableCategory(pCategory, true);
}
void MicroProfileDisableCategory(const char* pCategory)
{
    MicroProfileEnableCategory(pCategory, false);
}

bool MicroProfileGetEnableAllGroups()
{
    return 0 != S.nAllGroupsWanted;
}

void MicroProfileSetForceMetaCounters(bool bForce)
{
    S.nForceMetaCounters = bForce ? 1 : 0;
}

bool MicroProfileGetForceMetaCounters()
{
    return 0 != S.nForceMetaCounters;
}

void MicroProfileEnableMetaCounter(const char* pMeta)
{
    for(uint32_t i = 0; i < MICROPROFILE_META_MAX; ++i)
    {
        if(S.MetaCounters[i].pName && 0 == MP_STRCASECMP(S.MetaCounters[i].pName, pMeta))
        {
            S.nBars |= (MP_DRAW_META_FIRST<<i);
            return;
        }
    }
}
void MicroProfileDisableMetaCounter(const char* pMeta)
{
    for(uint32_t i = 0; i < MICROPROFILE_META_MAX; ++i)
    {
        if(S.MetaCounters[i].pName && 0 == MP_STRCASECMP(S.MetaCounters[i].pName, pMeta))
        {
            S.nBars &= ~(MP_DRAW_META_FIRST<<i);
            return;
        }
    }
}


void MicroProfileSetAggregateFrames(int nFrames)
{
    S.nAggregateFlip = (uint32_t)nFrames;
    if(0 == nFrames)
    {
        S.nAggregateClear = 1;
    }
}

int MicroProfileGetAggregateFrames()
{
    return S.nAggregateFlip;
}

int MicroProfileGetCurrentAggregateFrames()
{
    return int(S.nAggregateFlip ? S.nAggregateFlip : S.nAggregateFlipCount);
}


void MicroProfileForceEnableGroup(const char* pGroup, MicroProfileTokenType Type)
{
    MicroProfileInit();
    std::lock_guard<std::recursive_mutex> Lock(MicroProfileMutex());
    uint16_t nGroup = MicroProfileGetGroup(pGroup, Type);
    S.nForceGroup |= (1ll << nGroup);
}

void MicroProfileForceDisableGroup(const char* pGroup, MicroProfileTokenType Type)
{
    MicroProfileInit();
    std::lock_guard<std::recursive_mutex> Lock(MicroProfileMutex());
    uint16_t nGroup = MicroProfileGetGroup(pGroup, Type);
    S.nForceGroup &= ~(1ll << nGroup);
}


void MicroProfileCalcAllTimers(float* pTimers, float* pAverage, float* pMax, float* pCallAverage, float* pExclusive, float* pAverageExclusive, float* pMaxExclusive, float* pTotal, uint32_t nSize)
{
    for(uint32_t i = 0; i < S.nTotalTimers && i < nSize; ++i)
    {
        const uint32_t nGroupId = S.TimerInfo[i].nGroupIndex;
        const float fToMs = MicroProfileTickToMsMultiplier(S.GroupInfo[nGroupId].Type == MicroProfileTokenTypeGpu ? MicroProfileTicksPerSecondGpu() : MicroProfileTicksPerSecondCpu());
        uint32_t nTimer = i;
        uint32_t nIdx = i * 2;
        uint32_t nAggregateFrames = S.nAggregateFrames ? S.nAggregateFrames : 1;
        uint32_t nAggregateCount = S.Aggregate[nTimer].nCount ? S.Aggregate[nTimer].nCount : 1;
        float fToPrc = S.fRcpReferenceTime;
        float fMs = fToMs * (S.Frame[nTimer].nTicks);
        float fPrc = MicroProfileMin(fMs * fToPrc, 1.f);
        float fAverageMs = fToMs * (S.Aggregate[nTimer].nTicks / nAggregateFrames);
        float fAveragePrc = MicroProfileMin(fAverageMs * fToPrc, 1.f);
        float fMaxMs = fToMs * (S.AggregateMax[nTimer]);
        float fMaxPrc = MicroProfileMin(fMaxMs * fToPrc, 1.f);
        float fCallAverageMs = fToMs * (S.Aggregate[nTimer].nTicks / nAggregateCount);
        float fCallAveragePrc = MicroProfileMin(fCallAverageMs * fToPrc, 1.f);
        float fMsExclusive = fToMs * (S.FrameExclusive[nTimer]);
        float fPrcExclusive = MicroProfileMin(fMsExclusive * fToPrc, 1.f);
        float fAverageMsExclusive = fToMs * (S.AggregateExclusive[nTimer] / nAggregateFrames);
        float fAveragePrcExclusive = MicroProfileMin(fAverageMsExclusive * fToPrc, 1.f);
        float fMaxMsExclusive = fToMs * (S.AggregateMaxExclusive[nTimer]);
        float fMaxPrcExclusive = MicroProfileMin(fMaxMsExclusive * fToPrc, 1.f);
        float fTotalMs = fToMs * S.Aggregate[nTimer].nTicks;
        pTimers[nIdx] = fMs;
        pTimers[nIdx+1] = fPrc;
        pAverage[nIdx] = fAverageMs;
        pAverage[nIdx+1] = fAveragePrc;
        pMax[nIdx] = fMaxMs;
        pMax[nIdx+1] = fMaxPrc;
        pCallAverage[nIdx] = fCallAverageMs;
        pCallAverage[nIdx+1] = fCallAveragePrc;
        pExclusive[nIdx] = fMsExclusive;
        pExclusive[nIdx+1] = fPrcExclusive;
        pAverageExclusive[nIdx] = fAverageMsExclusive;
        pAverageExclusive[nIdx+1] = fAveragePrcExclusive;
        pMaxExclusive[nIdx] = fMaxMsExclusive;
        pMaxExclusive[nIdx+1] = fMaxPrcExclusive;
        pTotal[nIdx] = fTotalMs;
        pTotal[nIdx+1] = 0.f;
    }
}

void MicroProfileTogglePause()
{
    S.nToggleRunning = 1;
}

float MicroProfileGetTime(const char* pGroup, const char* pName)
{
    MicroProfileToken nToken = MicroProfileFindToken(pGroup, pName);
    if(nToken == MICROPROFILE_INVALID_TOKEN)
    {
        return 0.f;
    }
    uint32_t nTimerIndex = MicroProfileGetTimerIndex(nToken);
    uint32_t nGroupIndex = MicroProfileGetGroupIndex(nToken);
    float fToMs = MicroProfileTickToMsMultiplier(S.GroupInfo[nGroupIndex].Type == MicroProfileTokenTypeGpu ? MicroProfileTicksPerSecondGpu() : MicroProfileTicksPerSecondCpu());
    return S.Frame[nTimerIndex].nTicks * fToMs;
}


void MicroProfileContextSwitchSearch(uint32_t* pContextSwitchStart, uint32_t* pContextSwitchEnd, uint64_t nBaseTicksCpu, uint64_t nBaseTicksEndCpu)
{
    MICROPROFILE_SCOPE(g_MicroProfileContextSwitchSearch);
    uint32_t nContextSwitchPut = S.nContextSwitchPut;
    uint64_t nContextSwitchStart, nContextSwitchEnd;
    nContextSwitchStart = nContextSwitchEnd = (nContextSwitchPut + MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE - 1) % MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE;
    int64_t nSearchEnd = nBaseTicksEndCpu + MicroProfileMsToTick(30.f, MicroProfileTicksPerSecondCpu());
    int64_t nSearchBegin = nBaseTicksCpu - MicroProfileMsToTick(30.f, MicroProfileTicksPerSecondCpu());
    for(uint32_t i = 0; i < MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE; ++i)
    {
        uint32_t nIndex = (nContextSwitchPut + MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE - (i+1)) % MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE;
        MicroProfileContextSwitch& CS = S.ContextSwitch[nIndex];
        if(CS.nTicks > nSearchEnd)
        {
            nContextSwitchEnd = nIndex;
        }
        if(CS.nTicks > nSearchBegin)
        {
            nContextSwitchStart = nIndex;
        }
    }
    *pContextSwitchStart = nContextSwitchStart;
    *pContextSwitchEnd = nContextSwitchEnd;
}



#if MICROPROFILE_WEBSERVER

#define MICROPROFILE_EMBED_HTML

extern const char* g_MicroProfileHtml_begin[];
extern size_t g_MicroProfileHtml_begin_sizes[];
extern size_t g_MicroProfileHtml_begin_count;
extern const char* g_MicroProfileHtml_end[];
extern size_t g_MicroProfileHtml_end_sizes[];
extern size_t g_MicroProfileHtml_end_count;

typedef void MicroProfileWriteCallback(void* Handle, size_t size, const char* pData);

uint32_t MicroProfileWebServerPort()
{
    return S.nWebServerPort;
}

void MicroProfileDumpFile(const char* pHtml, const char* pCsv)
{
    S.nDumpFileNextFrame = 0;
    if(pHtml)
    {
        uint32_t nLen = strlen(pHtml);
        if(nLen > sizeof(S.HtmlDumpPath)-1)
        {
            return;
        }
        memcpy(S.HtmlDumpPath, pHtml, nLen+1);
        S.nDumpFileNextFrame |= 1;
    }
    if(pCsv)
    {
        uint32_t nLen = strlen(pCsv);
        if(nLen > sizeof(S.CsvDumpPath)-1)
        {
            return;
        }
        memcpy(S.CsvDumpPath, pCsv, nLen+1);
        S.nDumpFileNextFrame |= 2;
    }
}

void MicroProfilePrintf(MicroProfileWriteCallback CB, void* Handle, const char* pFmt, ...)
{
    char buffer[32*1024];
    va_list args;
    va_start (args, pFmt);
#ifdef _WIN32
    size_t size = vsprintf_s(buffer, pFmt, args);
#else
    size_t size = vsnprintf(buffer, sizeof(buffer)-1,  pFmt, args);
#endif
    CB(Handle, size, &buffer[0]);
    va_end (args);
}

#define printf(...) MicroProfilePrintf(CB, Handle, __VA_ARGS__)
void MicroProfileDumpCsv(MicroProfileWriteCallback CB, void* Handle, int nMaxFrames)
{
    uint32_t nAggregateFrames = S.nAggregateFrames ? S.nAggregateFrames : 1;
    float fToMsCPU = MicroProfileTickToMsMultiplier(MicroProfileTicksPerSecondCpu());
    float fToMsGPU = MicroProfileTickToMsMultiplier(MicroProfileTicksPerSecondGpu());

    printf("frames,%d\n", nAggregateFrames);
    printf("group,name,average,max,callaverage\n");

    uint32_t nNumTimers = S.nTotalTimers;
    uint32_t nBlockSize = 2 * nNumTimers;
    float* pTimers = (float*)alloca(nBlockSize * 8 * sizeof(float));
    float* pAverage = pTimers + nBlockSize;
    float* pMax = pTimers + 2 * nBlockSize;
    float* pCallAverage = pTimers + 3 * nBlockSize;
    float* pTimersExclusive = pTimers + 4 * nBlockSize;
    float* pAverageExclusive = pTimers + 5 * nBlockSize;
    float* pMaxExclusive = pTimers + 6 * nBlockSize;
    float* pTotal = pTimers + 7 * nBlockSize;

    MicroProfileCalcAllTimers(pTimers, pAverage, pMax, pCallAverage, pTimersExclusive, pAverageExclusive, pMaxExclusive, pTotal, nNumTimers);

    for(uint32_t i = 0; i < S.nTotalTimers; ++i)
    {
        uint32_t nIdx = i * 2;
        printf("\"%s\",\"%s\",%f,%f,%f\n", S.TimerInfo[i].pName, S.GroupInfo[S.TimerInfo[i].nGroupIndex].pName, pAverage[nIdx], pMax[nIdx], pCallAverage[nIdx]);
    }

    printf("\n\n");

    printf("group,average,max,total\n");
    for(uint32_t j = 0; j < MICROPROFILE_MAX_GROUPS; ++j)
    {
        const char* pGroupName = S.GroupInfo[j].pName;
        float fToMs =  S.GroupInfo[j].Type == MicroProfileTokenTypeGpu ? fToMsGPU : fToMsCPU;
        if(pGroupName[0] != '\0')
        {
            printf("\"%s\",%.3f,%.3f,%.3f\n", pGroupName, fToMs * S.AggregateGroup[j] / nAggregateFrames, fToMs * S.AggregateGroup[j] / nAggregateFrames, fToMs * S.AggregateGroup[j]);
        }
    }

    printf("\n\n");
    printf("group,thread,average,total\n");
    for(uint32_t j = 0; j < MICROPROFILE_MAX_GROUPS; ++j)
    {
        for(uint32_t i = 0; i < S.nNumLogs; ++i)
        {
            if(S.Pool[i])
            {
                const char* pThreadName = &S.Pool[i]->ThreadName[0];
                // MicroProfilePrintf(CB, Handle, "var ThreadGroupTime%d = [", i);
                float fToMs = S.Pool[i]->nGpu ? fToMsGPU : fToMsCPU;
                {
                    uint64_t nTicks = S.Pool[i]->nAggregateGroupTicks[j];
                    float fTime = nTicks / nAggregateFrames * fToMs;
                    float fTimeTotal = nTicks * fToMs;
                    if(fTimeTotal > 0.01f)
                    {
                        const char* pGroupName = S.GroupInfo[j].pName;
                        printf("\"%s\",\"%s\",%.3f,%.3f\n", pGroupName, pThreadName, fTime, fTimeTotal);
                    }
                }
            }
        }
    }

    printf("\n\n");
    printf("frametimecpu\n");

    const uint32_t nCount = MICROPROFILE_MAX_FRAME_HISTORY - MICROPROFILE_GPU_FRAME_DELAY - 3;
    const uint32_t nStart = S.nFrameCurrent;
    for(uint32_t i = nCount; i > 0; i--)
    {
        uint32_t nFrame = (nStart + MICROPROFILE_MAX_FRAME_HISTORY - i) % MICROPROFILE_MAX_FRAME_HISTORY;
        uint32_t nFrameNext = (nStart + MICROPROFILE_MAX_FRAME_HISTORY - i + 1) % MICROPROFILE_MAX_FRAME_HISTORY;
        uint64_t nTicks = S.Frames[nFrameNext].nFrameStartCpu - S.Frames[nFrame].nFrameStartCpu;
        printf("%f,", nTicks * fToMsCPU);
    }
    printf("\n");

    printf("\n\n");
    printf("frametimegpu\n");

    for(uint32_t i = nCount; i > 0; i--)
    {
        uint32_t nFrame = (nStart + MICROPROFILE_MAX_FRAME_HISTORY - i) % MICROPROFILE_MAX_FRAME_HISTORY;
        uint32_t nFrameNext = (nStart + MICROPROFILE_MAX_FRAME_HISTORY - i + 1) % MICROPROFILE_MAX_FRAME_HISTORY;
        uint64_t nTicks = S.Frames[nFrameNext].nFrameStartGpu - S.Frames[nFrame].nFrameStartGpu;
        printf("%f,", nTicks * fToMsGPU);
    }
    printf("\n\n");
    printf("Meta\n");//only single frame snapshot
    printf("name,average,max,total\n");
    for(int j = 0; j < MICROPROFILE_META_MAX; ++j)
    {
        if(S.MetaCounters[j].pName)
        {
            printf("\"%s\",%f,%lld,%lld\n",S.MetaCounters[j].pName, S.MetaCounters[j].nSumAggregate / (float)nAggregateFrames, S.MetaCounters[j].nSumAggregateMax,S.MetaCounters[j].nSumAggregate);
        }
    }
}
#undef printf

void MicroProfileDumpHtml(MicroProfileWriteCallback CB, void* Handle, int nMaxFrames, const char* pHost)
{
    uint32_t nRunning = S.nRunning;
    S.nRunning = 0;
    //stall pushing of timers
    uint64_t nActiveGroup = S.nActiveGroup;
    S.nActiveGroup = 0;
    S.nPauseTicks = MP_TICK();


    for(size_t i = 0; i < g_MicroProfileHtml_begin_count; ++i)
    {
        CB(Handle, g_MicroProfileHtml_begin_sizes[i]-1, g_MicroProfileHtml_begin[i]);
    }
    //dump info
    uint64_t nTicks = MP_TICK();

    float fToMsCPU = MicroProfileTickToMsMultiplier(MicroProfileTicksPerSecondCpu());
    float fToMsGPU = MicroProfileTickToMsMultiplier(MicroProfileTicksPerSecondGpu());
    float fAggregateMs = fToMsCPU * (nTicks - S.nAggregateFlipTick);
    MicroProfilePrintf(CB, Handle, "var DumpHost = '%s';\n", pHost ? pHost : "");
    time_t CaptureTime;
    time(&CaptureTime);
    MicroProfilePrintf(CB, Handle, "var DumpUtcCaptureTime = %ld;\n", CaptureTime);
    MicroProfilePrintf(CB, Handle, "var AggregateInfo = {'Frames':%d, 'Time':%f};\n", S.nAggregateFrames, fAggregateMs);

    //categories
    MicroProfilePrintf(CB, Handle, "var CategoryInfo = Array(%d);\n",S.nCategoryCount);
    for(uint32_t i = 0; i < S.nCategoryCount; ++i)
    {
        MicroProfilePrintf(CB, Handle, "CategoryInfo[%d] = \"%s\";\n", i, S.CategoryInfo[i].pName);
    }

    //groups
    MicroProfilePrintf(CB, Handle, "var GroupInfo = Array(%d);\n\n",S.nGroupCount);
    uint32_t nAggregateFrames = S.nAggregateFrames ? S.nAggregateFrames : 1;
    float fRcpAggregateFrames = 1.f / nAggregateFrames;
    for(uint32_t i = 0; i < S.nGroupCount; ++i)
    {
        MP_ASSERT(i == S.GroupInfo[i].nGroupIndex);
        float fToMs = S.GroupInfo[i].Type == MicroProfileTokenTypeCpu ? fToMsCPU : fToMsGPU;
        MicroProfilePrintf(CB, Handle, "GroupInfo[%d] = MakeGroup(%d, \"%s\", %d, %d, %d, %f, %f, %f, '#%02x%02x%02x');\n",
            S.GroupInfo[i].nGroupIndex,
            S.GroupInfo[i].nGroupIndex,
            S.GroupInfo[i].pName,
            S.GroupInfo[i].nCategory,
            S.GroupInfo[i].nNumTimers,
            S.GroupInfo[i].Type == MicroProfileTokenTypeGpu?1:0,
            fToMs * S.AggregateGroup[i],
            fToMs * S.AggregateGroup[i] / nAggregateFrames,
            fToMs * S.AggregateGroupMax[i],
            MICROPROFILE_UNPACK_RED(S.GroupInfo[i].nColor) & 0xff,
            MICROPROFILE_UNPACK_GREEN(S.GroupInfo[i].nColor) & 0xff,
            MICROPROFILE_UNPACK_BLUE(S.GroupInfo[i].nColor) & 0xff);
    }
    //timers

    uint32_t nNumTimers = S.nTotalTimers;
    uint32_t nBlockSize = 2 * nNumTimers;
    float* pTimers = (float*)alloca(nBlockSize * 8 * sizeof(float));
    float* pAverage = pTimers + nBlockSize;
    float* pMax = pTimers + 2 * nBlockSize;
    float* pCallAverage = pTimers + 3 * nBlockSize;
    float* pTimersExclusive = pTimers + 4 * nBlockSize;
    float* pAverageExclusive = pTimers + 5 * nBlockSize;
    float* pMaxExclusive = pTimers + 6 * nBlockSize;
    float* pTotal = pTimers + 7 * nBlockSize;

    MicroProfileCalcAllTimers(pTimers, pAverage, pMax, pCallAverage, pTimersExclusive, pAverageExclusive, pMaxExclusive, pTotal, nNumTimers);

    MicroProfilePrintf(CB, Handle, "\nvar TimerInfo = Array(%d);\n\n", S.nTotalTimers);
    for(uint32_t i = 0; i < S.nTotalTimers; ++i)
    {
        uint32_t nIdx = i * 2;
        MP_ASSERT(i == S.TimerInfo[i].nTimerIndex);
        MicroProfilePrintf(CB, Handle, "var Meta%d = [", i);
        bool bOnce = true;
        for(int j = 0; j < MICROPROFILE_META_MAX; ++j)
        {
            if(S.MetaCounters[j].pName)
            {
                uint32_t lala = S.MetaCounters[j].nCounters[i];
                MicroProfilePrintf(CB, Handle, bOnce ? "%d" : ",%d", lala);
                bOnce = false;
            }
        }
        MicroProfilePrintf(CB, Handle, "];\n");
        MicroProfilePrintf(CB, Handle, "var MetaAvg%d = [", i);
        bOnce = true;
        for(int j = 0; j < MICROPROFILE_META_MAX; ++j)
        {
            if(S.MetaCounters[j].pName)
            {
                MicroProfilePrintf(CB, Handle, bOnce ? "%f" : ",%f", fRcpAggregateFrames * S.MetaCounters[j].nAggregate[i]);
                bOnce = false;
            }
        }
        MicroProfilePrintf(CB, Handle, "];\n");
        MicroProfilePrintf(CB, Handle, "var MetaMax%d = [", i);
        bOnce = true;
        for(int j = 0; j < MICROPROFILE_META_MAX; ++j)
        {
            if(S.MetaCounters[j].pName)
            {
                MicroProfilePrintf(CB, Handle, bOnce ? "%d" : ",%d", S.MetaCounters[j].nAggregateMax[i]);
                bOnce = false;
            }
        }
        MicroProfilePrintf(CB, Handle, "];\n");


        uint32_t nColor = S.TimerInfo[i].nColor;
        uint32_t nColorDark = (nColor >> 1) & ~0x80808080;
        MicroProfilePrintf(CB, Handle, "TimerInfo[%d] = MakeTimer(%d, \"%s\", %d, '#%02x%02x%02x','#%02x%02x%02x', %f, %f, %f, %f, %f, %d, %f, Meta%d, MetaAvg%d, MetaMax%d);\n", S.TimerInfo[i].nTimerIndex, S.TimerInfo[i].nTimerIndex, S.TimerInfo[i].pName, S.TimerInfo[i].nGroupIndex,
            MICROPROFILE_UNPACK_RED(nColor) & 0xff,
            MICROPROFILE_UNPACK_GREEN(nColor) & 0xff,
            MICROPROFILE_UNPACK_BLUE(nColor) & 0xff,
            MICROPROFILE_UNPACK_RED(nColorDark) & 0xff,
            MICROPROFILE_UNPACK_GREEN(nColorDark) & 0xff,
            MICROPROFILE_UNPACK_BLUE(nColorDark) & 0xff,
            pAverage[nIdx],
            pMax[nIdx],
            pAverageExclusive[nIdx],
            pMaxExclusive[nIdx],
            pCallAverage[nIdx],
            S.Aggregate[i].nCount,
            pTotal[nIdx],
            i,i,i);

    }

    MicroProfilePrintf(CB, Handle, "\nvar ThreadNames = [");
    for(uint32_t i = 0; i < S.nNumLogs; ++i)
    {
        if(S.Pool[i])
        {
            MicroProfilePrintf(CB, Handle, "'%s',", S.Pool[i]->ThreadName);
        }
        else
        {
            MicroProfilePrintf(CB, Handle, "'Thread %d',", i);
        }
    }
    MicroProfilePrintf(CB, Handle, "];\n\n");


    for(uint32_t i = 0; i < S.nNumLogs; ++i)
    {
        if(S.Pool[i])
        {
            MicroProfilePrintf(CB, Handle, "var ThreadGroupTime%d = [", i);
            float fToMs = S.Pool[i]->nGpu ? fToMsGPU : fToMsCPU;
            for(uint32_t j = 0; j < MICROPROFILE_MAX_GROUPS; ++j)
            {
                MicroProfilePrintf(CB, Handle, "%f,", S.Pool[i]->nAggregateGroupTicks[j]/nAggregateFrames * fToMs);
            }
            MicroProfilePrintf(CB, Handle, "];\n");
        }
    }
    MicroProfilePrintf(CB, Handle, "\nvar ThreadGroupTimeArray = [");
    for(uint32_t i = 0; i < S.nNumLogs; ++i)
    {
        if(S.Pool[i])
        {
            MicroProfilePrintf(CB, Handle, "ThreadGroupTime%d,", i);
        }
    }
    MicroProfilePrintf(CB, Handle, "];\n");


    for(uint32_t i = 0; i < S.nNumLogs; ++i)
    {
        if(S.Pool[i])
        {
            MicroProfilePrintf(CB, Handle, "var ThreadGroupTimeTotal%d = [", i);
            float fToMs = S.Pool[i]->nGpu ? fToMsGPU : fToMsCPU;
            for(uint32_t j = 0; j < MICROPROFILE_MAX_GROUPS; ++j)
            {
                MicroProfilePrintf(CB, Handle, "%f,", S.Pool[i]->nAggregateGroupTicks[j] * fToMs);
            }
            MicroProfilePrintf(CB, Handle, "];\n");
        }
    }
    MicroProfilePrintf(CB, Handle, "\nvar ThreadGroupTimeTotalArray = [");
    for(uint32_t i = 0; i < S.nNumLogs; ++i)
    {
        if(S.Pool[i])
        {
            MicroProfilePrintf(CB, Handle, "ThreadGroupTimeTotal%d,", i);
        }
    }
    MicroProfilePrintf(CB, Handle, "];");




    MicroProfilePrintf(CB, Handle, "\nvar ThreadIds = [");
    for(uint32_t i = 0; i < S.nNumLogs; ++i)
    {
        if(S.Pool[i])
        {
            ThreadIdType ThreadId = S.Pool[i]->nThreadId;
            if(!ThreadId)
            {
                ThreadId = (ThreadIdType)-1;
            }
            MicroProfilePrintf(CB, Handle, "%d,", ThreadId);
        }
        else
        {
            MicroProfilePrintf(CB, Handle, "-1,", i);
        }
    }
    MicroProfilePrintf(CB, Handle, "];\n\n");

    MicroProfilePrintf(CB, Handle, "\nvar MetaNames = [");
    for(int i = 0; i < MICROPROFILE_META_MAX; ++i)
    {
        if(S.MetaCounters[i].pName)
        {
            MicroProfilePrintf(CB, Handle, "'%s',", S.MetaCounters[i].pName);
        }
    }


    MicroProfilePrintf(CB, Handle, "];\n\n");



    uint32_t nNumFrames = (MICROPROFILE_MAX_FRAME_HISTORY - MICROPROFILE_GPU_FRAME_DELAY - 3); //leave a few to not overwrite
    nNumFrames = MicroProfileMin(nNumFrames, (uint32_t)nMaxFrames);


    uint32_t nFirstFrame = (S.nFrameCurrent + MICROPROFILE_MAX_FRAME_HISTORY - nNumFrames) % MICROPROFILE_MAX_FRAME_HISTORY;
    uint32_t nLastFrame = (nFirstFrame + nNumFrames) % MICROPROFILE_MAX_FRAME_HISTORY;
    MP_ASSERT(nLastFrame == (S.nFrameCurrent % MICROPROFILE_MAX_FRAME_HISTORY));
    MP_ASSERT(nFirstFrame < MICROPROFILE_MAX_FRAME_HISTORY);
    MP_ASSERT(nLastFrame  < MICROPROFILE_MAX_FRAME_HISTORY);
    const int64_t nTickStart = S.Frames[nFirstFrame].nFrameStartCpu;
    const int64_t nTickEnd = S.Frames[nLastFrame].nFrameStartCpu;
    int64_t nTickStartGpu = S.Frames[nFirstFrame].nFrameStartGpu;

    int64_t nTickReferenceCpu, nTickReferenceGpu;
    int64_t nTicksPerSecondCpu = MicroProfileTicksPerSecondCpu();
    int64_t nTicksPerSecondGpu = MicroProfileTicksPerSecondGpu();
    int nTickReference = 0;
    if(MicroProfileGetGpuTickReference(&nTickReferenceCpu, &nTickReferenceGpu))
    {
        nTickStartGpu = (nTickStart - nTickReferenceCpu) * nTicksPerSecondGpu / nTicksPerSecondCpu + nTickReferenceGpu;
        nTickReference = 1;
    }


#if MICROPROFILE_DEBUG
    printf("dumping %d frames\n", nNumFrames);
    printf("dumping frame %d to %d\n", nFirstFrame, nLastFrame);
#endif


    uint32_t* nTimerCounter = (uint32_t*)alloca(sizeof(uint32_t)* S.nTotalTimers);
    memset(nTimerCounter, 0, sizeof(uint32_t) * S.nTotalTimers);

    MicroProfilePrintf(CB, Handle, "var Frames = Array(%d);\n", nNumFrames);
    for(uint32_t i = 0; i < nNumFrames; ++i)
    {
        uint32_t nFrameIndex = (nFirstFrame + i) % MICROPROFILE_MAX_FRAME_HISTORY;
        uint32_t nFrameIndexNext = (nFrameIndex + 1) % MICROPROFILE_MAX_FRAME_HISTORY;

        for(uint32_t j = 0; j < S.nNumLogs; ++j)
        {
            MicroProfileThreadLog* pLog = S.Pool[j];
            int64_t nStartTickBase = pLog->nGpu ? nTickStartGpu : nTickStart;
            uint32_t nLogStart = S.Frames[nFrameIndex].nLogStart[j];
            uint32_t nLogEnd = S.Frames[nFrameIndexNext].nLogStart[j];

            float fToMsCpu = MicroProfileTickToMsMultiplier(nTicksPerSecondCpu);
            float fToMsBase = MicroProfileTickToMsMultiplier(pLog->nGpu ? nTicksPerSecondGpu : nTicksPerSecondCpu);
            MicroProfilePrintf(CB, Handle, "var ts_%d_%d = [", i, j);
            if(nLogStart != nLogEnd)
            {
                uint32_t k = nLogStart;
                uint32_t nLogType = MicroProfileLogType(pLog->Log[k]);
                float fToMs = nLogType == MP_LOG_GPU_EXTRA ? fToMsCpu : fToMsBase;
                int64_t nStartTick = nLogType == MP_LOG_GPU_EXTRA ? nTickStart : nStartTickBase;
                float fTime = nLogType == MP_LOG_META ? 0.f : MicroProfileLogTickDifference(nStartTick, pLog->Log[k]) * fToMs;
                MicroProfilePrintf(CB, Handle, "%f", fTime);
                for(k = (k+1) % MICROPROFILE_BUFFER_SIZE; k != nLogEnd; k = (k+1) % MICROPROFILE_BUFFER_SIZE)
                {
                    uint32_t nLogType = MicroProfileLogType(pLog->Log[k]);
                    float fToMs = nLogType == MP_LOG_GPU_EXTRA ? fToMsCpu : fToMsBase;
                    nStartTick = nLogType == MP_LOG_GPU_EXTRA ? nTickStart : nStartTickBase;
                    float fTime = nLogType == MP_LOG_META ? 0.f : MicroProfileLogTickDifference(nStartTick, pLog->Log[k]) * fToMs;
                    MicroProfilePrintf(CB, Handle, ",%f", fTime);
                }
            }
            MicroProfilePrintf(CB, Handle, "];\n");
            MicroProfilePrintf(CB, Handle, "var tt_%d_%d = [", i, j);
            if(nLogStart != nLogEnd)
            {
                uint32_t k = nLogStart;
                MicroProfilePrintf(CB, Handle, "%d", MicroProfileLogType(pLog->Log[k]));
                for(k = (k+1) % MICROPROFILE_BUFFER_SIZE; k != nLogEnd; k = (k+1) % MICROPROFILE_BUFFER_SIZE)
                {
                    uint32_t nLogType = MicroProfileLogType(pLog->Log[k]);
                    if(nLogType == MP_LOG_META)
                    {
                        //for meta, store the count + 3, which is the tick part
                        nLogType = 3 + MicroProfileLogGetTick(pLog->Log[k]);
                    }
                    MicroProfilePrintf(CB, Handle, ",%d", nLogType);
                }
            }
            MicroProfilePrintf(CB, Handle, "];\n");

            MicroProfilePrintf(CB, Handle, "var ti_%d_%d = [", i, j);
            if(nLogStart != nLogEnd)
            {
                uint32_t k = nLogStart;
                MicroProfilePrintf(CB, Handle, "%d", (uint32_t)MicroProfileLogTimerIndex(pLog->Log[k]));
                for(k = (k+1) % MICROPROFILE_BUFFER_SIZE; k != nLogEnd; k = (k+1) % MICROPROFILE_BUFFER_SIZE)
                {
                    uint32_t nTimerIndex = (uint32_t)MicroProfileLogTimerIndex(pLog->Log[k]);
                    MicroProfilePrintf(CB, Handle, ",%d", nTimerIndex);
                    nTimerCounter[nTimerIndex]++;
                }
            }
            MicroProfilePrintf(CB, Handle, "];\n");

        }

        MicroProfilePrintf(CB, Handle, "var ts%d = [", i);
        for(uint32_t j = 0; j < S.nNumLogs; ++j)
        {
            MicroProfilePrintf(CB, Handle, "ts_%d_%d,", i, j);
        }
        MicroProfilePrintf(CB, Handle, "];\n");
        MicroProfilePrintf(CB, Handle, "var tt%d = [", i);
        for(uint32_t j = 0; j < S.nNumLogs; ++j)
        {
            MicroProfilePrintf(CB, Handle, "tt_%d_%d,", i, j);
        }
        MicroProfilePrintf(CB, Handle, "];\n");

        MicroProfilePrintf(CB, Handle, "var ti%d = [", i);
        for(uint32_t j = 0; j < S.nNumLogs; ++j)
        {
            MicroProfilePrintf(CB, Handle, "ti_%d_%d,", i, j);
        }
        MicroProfilePrintf(CB, Handle, "];\n");


        int64_t nFrameStart = S.Frames[nFrameIndex].nFrameStartCpu;
        int64_t nFrameEnd = S.Frames[nFrameIndexNext].nFrameStartCpu;

        float fToMs = MicroProfileTickToMsMultiplier(nTicksPerSecondCpu);
        float fFrameMs = MicroProfileLogTickDifference(nTickStart, nFrameStart) * fToMs;
        float fFrameEndMs = MicroProfileLogTickDifference(nTickStart, nFrameEnd) * fToMs;
        float fFrameGpuMs = 0;
        float fFrameGpuEndMs = 0;
        if(nTickReference)
        {
            fFrameGpuMs = MicroProfileLogTickDifference(nTickStartGpu, S.Frames[nFrameIndex].nFrameStartGpu) * fToMsGPU;
            fFrameGpuEndMs = MicroProfileLogTickDifference(nTickStartGpu, S.Frames[nFrameIndexNext].nFrameStartGpu) * fToMsGPU;
        }
        MicroProfilePrintf(CB, Handle, "Frames[%d] = MakeFrame(%d, %f, %f, %f, %f, ts%d, tt%d, ti%d);\n", i, 0, fFrameMs, fFrameEndMs, fFrameGpuMs, fFrameGpuEndMs, i, i, i);
    }

    uint32_t nContextSwitchStart = 0;
    uint32_t nContextSwitchEnd = 0;
    MicroProfileContextSwitchSearch(&nContextSwitchStart, &nContextSwitchEnd, nTickStart, nTickEnd);

    uint32_t nWrittenBefore = S.nWebServerDataSent;
    MicroProfilePrintf(CB, Handle, "var CSwitchThreadInOutCpu = [");
    for(uint32_t j = nContextSwitchStart; j != nContextSwitchEnd; j = (j+1) % MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE)
    {
        MicroProfileContextSwitch CS = S.ContextSwitch[j];
        int nCpu = CS.nCpu;
        MicroProfilePrintf(CB, Handle, "%d,%d,%d,", CS.nThreadIn, CS.nThreadOut, nCpu);
    }
    MicroProfilePrintf(CB, Handle, "];\n");
    MicroProfilePrintf(CB, Handle, "var CSwitchTime = [");
    float fToMsCpu = MicroProfileTickToMsMultiplier(MicroProfileTicksPerSecondCpu());
    for(uint32_t j = nContextSwitchStart; j != nContextSwitchEnd; j = (j+1) % MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE)
    {
        MicroProfileContextSwitch CS = S.ContextSwitch[j];
        float fTime = MicroProfileLogTickDifference(nTickStart, CS.nTicks) * fToMsCpu;
        MicroProfilePrintf(CB, Handle, "%f,", fTime);
    }
    MicroProfilePrintf(CB, Handle, "];\n");
    uint32_t nWrittenAfter = S.nWebServerDataSent;
    MicroProfilePrintf(CB, Handle, "//CSwitch Size %d\n", nWrittenAfter - nWrittenBefore);


    for(size_t i = 0; i < g_MicroProfileHtml_end_count; ++i)
    {
        CB(Handle, g_MicroProfileHtml_end_sizes[i]-1, g_MicroProfileHtml_end[i]);
    }

    uint32_t* nGroupCounter = (uint32_t*)alloca(sizeof(uint32_t)* S.nGroupCount);

    memset(nGroupCounter, 0, sizeof(uint32_t) * S.nGroupCount);
    for(uint32_t i = 0; i < S.nTotalTimers; ++i)
    {
        uint32_t nGroupIndex = S.TimerInfo[i].nGroupIndex;
        nGroupCounter[nGroupIndex] += nTimerCounter[i];
    }

    uint32_t* nGroupCounterSort = (uint32_t*)alloca(sizeof(uint32_t)* S.nGroupCount);
    uint32_t* nTimerCounterSort = (uint32_t*)alloca(sizeof(uint32_t)* S.nTotalTimers);
    for(uint32_t i = 0; i < S.nGroupCount; ++i)
    {
        nGroupCounterSort[i] = i;
    }
    for(uint32_t i = 0; i < S.nTotalTimers; ++i)
    {
        nTimerCounterSort[i] = i;
    }
    std::sort(nGroupCounterSort, nGroupCounterSort + S.nGroupCount,
        [nGroupCounter](const uint32_t l, const uint32_t r)
        {
            return nGroupCounter[l] > nGroupCounter[r];
        }
    );

    std::sort(nTimerCounterSort, nTimerCounterSort + S.nTotalTimers,
        [nTimerCounter](const uint32_t l, const uint32_t r)
        {
            return nTimerCounter[l] > nTimerCounter[r];
        }
    );

    MicroProfilePrintf(CB, Handle, "\n<!--\nMarker Per Group\n");
    for(uint32_t i = 0; i < S.nGroupCount; ++i)
    {
        uint32_t idx = nGroupCounterSort[i];
        MicroProfilePrintf(CB, Handle, "%8d:%s\n", nGroupCounter[idx], S.GroupInfo[idx].pName);
    }
    MicroProfilePrintf(CB, Handle, "Marker Per Timer\n");
    for(uint32_t i = 0; i < S.nTotalTimers; ++i)
    {
        uint32_t idx = nTimerCounterSort[i];
        MicroProfilePrintf(CB, Handle, "%8d:%s(%s)\n", nTimerCounter[idx], S.TimerInfo[idx].pName, S.GroupInfo[S.TimerInfo[idx].nGroupIndex].pName);
    }
    MicroProfilePrintf(CB, Handle, "\n-->\n");

    S.nActiveGroup = nActiveGroup;
    S.nRunning = nRunning;

#if MICROPROFILE_DEBUG
    int64_t nTicksEnd = MP_TICK();
    float fMs = fToMsCpu * (nTicksEnd - S.nPauseTicks);
    printf("html dump took %6.2fms\n", fMs);
#endif


}

void MicroProfileWriteFile(void* Handle, size_t nSize, const char* pData)
{
    fwrite(pData, nSize, 1, (FILE*)Handle);
}

void MicroProfileDumpToFile()
{
    std::lock_guard<std::recursive_mutex> Lock(MicroProfileMutex());
    if(S.nDumpFileNextFrame&1)
    {
        FILE* F = fopen(S.HtmlDumpPath, "w");
        if(F)
        {
            MicroProfileDumpHtml(MicroProfileWriteFile, F, MICROPROFILE_WEBSERVER_MAXFRAMES, S.HtmlDumpPath);
            fclose(F);
        }
    }
    if(S.nDumpFileNextFrame&2)
    {
        FILE* F = fopen(S.CsvDumpPath, "w");
        if(F)
        {
            MicroProfileDumpCsv(MicroProfileWriteFile, F, MICROPROFILE_WEBSERVER_MAXFRAMES);
            fclose(F);
        }
    }
}

void MicroProfileFlushSocket(MpSocket Socket)
{
    send(Socket, &S.WebServerBuffer[0], S.WebServerPut, 0);
    S.WebServerPut = 0;

}

void MicroProfileWriteSocket(void* Handle, size_t nSize, const char* pData)
{
    S.nWebServerDataSent += nSize;
    MpSocket Socket = *(MpSocket*)Handle;
    if(nSize > MICROPROFILE_WEBSERVER_SOCKET_BUFFER_SIZE / 2)
    {
        MicroProfileFlushSocket(Socket);
        send(Socket, pData, nSize, 0);

    }
    else
    {
        memcpy(&S.WebServerBuffer[S.WebServerPut], pData, nSize);
        S.WebServerPut += nSize;
        if(S.WebServerPut > MICROPROFILE_WEBSERVER_SOCKET_BUFFER_SIZE/2)
        {
            MicroProfileFlushSocket(Socket);
        }
    }
}

#if MICROPROFILE_MINIZ
#ifndef MICROPROFILE_COMPRESS_BUFFER_SIZE
#define MICROPROFILE_COMPRESS_BUFFER_SIZE (256<<10)
#endif

#define MICROPROFILE_COMPRESS_CHUNK (MICROPROFILE_COMPRESS_BUFFER_SIZE/2)
struct MicroProfileCompressedSocketState
{
    unsigned char DeflateOut[MICROPROFILE_COMPRESS_CHUNK];
    unsigned char DeflateIn[MICROPROFILE_COMPRESS_CHUNK];
    mz_stream Stream;
    MpSocket Socket;
    uint32_t nSize;
    uint32_t nCompressedSize;
    uint32_t nFlushes;
    uint32_t nMemmoveBytes;
};

void MicroProfileCompressedSocketFlush(MicroProfileCompressedSocketState* pState)
{
    mz_stream& Stream = pState->Stream;
    unsigned char* pSendStart = &pState->DeflateOut[0];
    unsigned char* pSendEnd = &pState->DeflateOut[MICROPROFILE_COMPRESS_CHUNK - Stream.avail_out];
    if(pSendStart != pSendEnd)
    {
        send(pState->Socket, (const char*)pSendStart, pSendEnd - pSendStart, 0);
        pState->nCompressedSize += pSendEnd - pSendStart;
    }
    Stream.next_out = &pState->DeflateOut[0];
    Stream.avail_out = MICROPROFILE_COMPRESS_CHUNK;

}
void MicroProfileCompressedSocketStart(MicroProfileCompressedSocketState* pState, MpSocket Socket)
{
    mz_stream& Stream = pState->Stream;
    memset(&Stream, 0, sizeof(Stream));
    Stream.next_out = &pState->DeflateOut[0];
    Stream.avail_out = MICROPROFILE_COMPRESS_CHUNK;
    Stream.next_in = &pState->DeflateIn[0];
    Stream.avail_in = 0;
    mz_deflateInit(&Stream, Z_DEFAULT_COMPRESSION);
    pState->Socket = Socket;
    pState->nSize = 0;
    pState->nCompressedSize = 0;
    pState->nFlushes = 0;
    pState->nMemmoveBytes = 0;

}
void MicroProfileCompressedSocketFinish(MicroProfileCompressedSocketState* pState)
{
    mz_stream& Stream = pState->Stream;
    MicroProfileCompressedSocketFlush(pState);
    int r = mz_deflate(&Stream, MZ_FINISH);
    MP_ASSERT(r == MZ_STREAM_END);
    MicroProfileCompressedSocketFlush(pState);
    r = mz_deflateEnd(&Stream);
    MP_ASSERT(r == MZ_OK);
}

void MicroProfileCompressedWriteSocket(void* Handle, size_t nSize, const char* pData)
{
    MicroProfileCompressedSocketState* pState = (MicroProfileCompressedSocketState*)Handle;
    mz_stream& Stream = pState->Stream;
    const unsigned char* pDeflateInEnd = Stream.next_in + Stream.avail_in;
    const unsigned char* pDeflateInStart = &pState->DeflateIn[0];
    const unsigned char* pDeflateInRealEnd = &pState->DeflateIn[MICROPROFILE_COMPRESS_CHUNK];
    pState->nSize += nSize;
    if(nSize <= pDeflateInRealEnd - pDeflateInEnd)
    {
        memcpy((void*)pDeflateInEnd, pData, nSize);
        Stream.avail_in += nSize;
        MP_ASSERT(Stream.next_in + Stream.avail_in <= pDeflateInRealEnd);
        return;
    }
    int Flush = 0;
    while(nSize)
    {
        pDeflateInEnd = Stream.next_in + Stream.avail_in;
        if(Flush)
        {
            pState->nFlushes++;
            MicroProfileCompressedSocketFlush(pState);
            pDeflateInRealEnd = &pState->DeflateIn[MICROPROFILE_COMPRESS_CHUNK];
            if(pDeflateInEnd == pDeflateInRealEnd)
            {
                if(Stream.avail_in)
                {
                    MP_ASSERT(pDeflateInStart != Stream.next_in);
                    memmove((void*)pDeflateInStart, Stream.next_in, Stream.avail_in);
                    pState->nMemmoveBytes += Stream.avail_in;
                }
                Stream.next_in = pDeflateInStart;
                pDeflateInEnd = Stream.next_in + Stream.avail_in;
            }
        }
        size_t nSpace = pDeflateInRealEnd - pDeflateInEnd;
        size_t nBytes = MicroProfileMin(nSpace, nSize);
        MP_ASSERT(nBytes + pDeflateInEnd <= pDeflateInRealEnd);
        memcpy((void*)pDeflateInEnd, pData, nBytes);
        Stream.avail_in += nBytes;
        nSize -= nBytes;
        pData += nBytes;
        int r = mz_deflate(&Stream, MZ_NO_FLUSH);
        Flush = r == MZ_BUF_ERROR || nBytes == 0 || Stream.avail_out == 0 ? 1 : 0;
        MP_ASSERT(r == MZ_BUF_ERROR || r == MZ_OK);
        if(r == MZ_BUF_ERROR)
        {
            r = mz_deflate(&Stream, MZ_SYNC_FLUSH);
        }
    }
}
#endif


#ifndef MicroProfileSetNonBlocking //fcntl doesnt work on a some unix like platforms..
void MicroProfileSetNonBlocking(MpSocket Socket, int NonBlocking)
{
#ifdef _WIN32
    u_long nonBlocking = NonBlocking ? 1 : 0;
    ioctlsocket(Socket, FIONBIO, &nonBlocking);
#else
    int Options = fcntl(Socket, F_GETFL);
    if(NonBlocking)
    {
        fcntl(Socket, F_SETFL, Options|O_NONBLOCK);
    }
    else
    {
        fcntl(Socket, F_SETFL, Options&(~O_NONBLOCK));
    }
#endif
}
#endif

void MicroProfileWebServerStart()
{
#ifdef _WIN32
    WSADATA wsa;
    if(WSAStartup(MAKEWORD(2, 2), &wsa))
    {
        S.ListenerSocket = -1;
        return;
    }
#endif

    S.ListenerSocket = socket(PF_INET, SOCK_STREAM, 6);
    MP_ASSERT(!MP_INVALID_SOCKET(S.ListenerSocket));
    MicroProfileSetNonBlocking(S.ListenerSocket, 1);

    S.nWebServerPort = (uint32_t)-1;
    struct sockaddr_in Addr;
    Addr.sin_family = AF_INET;
    Addr.sin_addr.s_addr = INADDR_ANY;
    for(int i = 0; i < 20; ++i)
    {
        Addr.sin_port = htons(MICROPROFILE_WEBSERVER_PORT+i);
        if(0 == bind(S.ListenerSocket, (sockaddr*)&Addr, sizeof(Addr)))
        {
            S.nWebServerPort = MICROPROFILE_WEBSERVER_PORT+i;
            break;
        }
    }
    listen(S.ListenerSocket, 8);
}

void MicroProfileWebServerStop()
{
#ifdef _WIN32
    closesocket(S.ListenerSocket);
    WSACleanup();
#else
    close(S.ListenerSocket);
#endif
}

int MicroProfileParseGet(const char* pGet)
{
    const char* pStart = pGet;
    while(*pGet != '\0')
    {
        if(*pGet < '0' || *pGet > '9')
            return 0;
        pGet++;
    }
    int nFrames = atoi(pStart);
    if(nFrames)
    {
        return nFrames;
    }
    else
    {
        return MICROPROFILE_WEBSERVER_MAXFRAMES;
    }
}
bool MicroProfileWebServerUpdate()
{
    MICROPROFILE_SCOPEI("MicroProfile", "Webserver-update", -1);
    MpSocket Connection = accept(S.ListenerSocket, 0, 0);
    bool bServed = false;
    if(!MP_INVALID_SOCKET(Connection))
    {
        std::lock_guard<std::recursive_mutex> Lock(MicroProfileMutex());
        char Req[8192];
        MicroProfileSetNonBlocking(Connection, 0);
        int nReceived = recv(Connection, Req, sizeof(Req)-1, 0);
        if(nReceived > 0)
        {
            Req[nReceived] = '\0';
#if MICROPROFILE_MINIZ
#define MICROPROFILE_HTML_HEADER "HTTP/1.0 200 OK\r\nContent-Type: text/html\r\nContent-Encoding: deflate\r\nExpires: Tue, 01 Jan 2199 16:00:00 GMT\r\n\r\n"
#else
#define MICROPROFILE_HTML_HEADER "HTTP/1.0 200 OK\r\nContent-Type: text/html\r\nExpires: Tue, 01 Jan 2199 16:00:00 GMT\r\n\r\n"
#endif
            char* pHttp = strstr(Req, "HTTP/");
            char* pGet = strstr(Req, "GET /");
            char* pHost = strstr(Req, "Host: ");
            auto Terminate = [](char* pString)
            {
                char* pEnd = pString;
                while(*pEnd != '\0')
                {
                    if(*pEnd == '\r' || *pEnd == '\n' || *pEnd == ' ')
                    {
                        *pEnd = '\0';
                        return;
                    }
                    pEnd++;
                }
            };
            if(pHost)
            {
                pHost += sizeof("Host: ")-1;
                Terminate(pHost);
            }

            if(pHttp && pGet)
            {
                *pHttp = '\0';
                pGet += sizeof("GET /")-1;
                Terminate(pGet);
                int nFrames = MicroProfileParseGet(pGet);
                if(nFrames)
                {
                    uint64_t nTickStart = MP_TICK();
                    send(Connection, MICROPROFILE_HTML_HEADER, sizeof(MICROPROFILE_HTML_HEADER)-1, 0);
                    uint64_t nDataStart = S.nWebServerDataSent;
                    S.WebServerPut = 0;
    #if 0 == MICROPROFILE_MINIZ
                    MicroProfileDumpHtml(MicroProfileWriteSocket, &Connection, nFrames, pHost);
                    uint64_t nDataEnd = S.nWebServerDataSent;
                    uint64_t nTickEnd = MP_TICK();
                    uint64_t nDiff = (nTickEnd - nTickStart);
                    float fMs = MicroProfileTickToMsMultiplier(MicroProfileTicksPerSecondCpu()) * nDiff;
                    int nKb = ((nDataEnd-nDataStart)>>10) + 1;
                    int nCompressedKb = nKb;
                    MicroProfilePrintf(MicroProfileWriteSocket, &Connection, "\n<!-- Sent %dkb in %.2fms-->\n\n",nKb, fMs);
                    MicroProfileFlushSocket(Connection);
    #else
                    MicroProfileCompressedSocketState CompressState;
                    MicroProfileCompressedSocketStart(&CompressState, Connection);
                    MicroProfileDumpHtml(MicroProfileCompressedWriteSocket, &CompressState, nFrames, pHost);
                    S.nWebServerDataSent += CompressState.nSize;
                    uint64_t nDataEnd = S.nWebServerDataSent;
                    uint64_t nTickEnd = MP_TICK();
                    uint64_t nDiff = (nTickEnd - nTickStart);
                    float fMs = MicroProfileTickToMsMultiplier(MicroProfileTicksPerSecondCpu()) * nDiff;
                    int nKb = ((nDataEnd-nDataStart)>>10) + 1;
                    int nCompressedKb = ((CompressState.nCompressedSize)>>10) + 1;
                    MicroProfilePrintf(MicroProfileCompressedWriteSocket, &CompressState, "\n<!-- Sent %dkb(compressed %dkb) in %.2fms-->\n\n", nKb, nCompressedKb, fMs);
                    MicroProfileCompressedSocketFinish(&CompressState);
                    MicroProfileFlushSocket(Connection);
    #endif

    #if MICROPROFILE_DEBUG
                    printf("\n<!-- Sent %dkb(compressed %dkb) in %.2fms-->\n\n", nKb, nCompressedKb, fMs);
    #endif
                }
            }
        }
#ifdef _WIN32
        closesocket(Connection);
#else
        close(Connection);
#endif
    }
    return bServed;
}
#endif




#if MICROPROFILE_CONTEXT_SWITCH_TRACE
//functions that need to be implemented per platform.
void* MicroProfileTraceThread(void* unused);
bool MicroProfileIsLocalThread(uint32_t nThreadId);


void MicroProfileStartContextSwitchTrace()
{
    if(!S.bContextSwitchRunning)
    {
        S.bContextSwitchRunning    = true;
        S.bContextSwitchStop = false;
        MicroProfileThreadStart(&S.ContextSwitchThread, MicroProfileTraceThread);
    }
}

void MicroProfileStopContextSwitchTrace()
{
    if(S.bContextSwitchRunning)
    {
        S.bContextSwitchStop = true;
        MicroProfileThreadJoin(&S.ContextSwitchThread);
    }
}


#ifdef _WIN32
#define INITGUID
#include <evntrace.h>
#include <evntcons.h>
#include <strsafe.h>


static GUID g_MicroProfileThreadClassGuid = { 0x3d6fa8d1, 0xfe05, 0x11d0, 0x9d, 0xda, 0x00, 0xc0, 0x4f, 0xd7, 0xba, 0x7c };

struct MicroProfileSCSwitch
{
    uint32_t NewThreadId;
    uint32_t OldThreadId;
    int8_t   NewThreadPriority;
    int8_t   OldThreadPriority;
    uint8_t  PreviousCState;
    int8_t   SpareByte;
    int8_t   OldThreadWaitReason;
    int8_t   OldThreadWaitMode;
    int8_t   OldThreadState;
    int8_t   OldThreadWaitIdealProcessor;
    uint32_t NewThreadWaitTime;
    uint32_t Reserved;
};


VOID WINAPI MicroProfileContextSwitchCallback(PEVENT_TRACE pEvent)
{
    if (pEvent->Header.Guid == g_MicroProfileThreadClassGuid)
    {
        if (pEvent->Header.Class.Type == 36)
        {
            MicroProfileSCSwitch* pCSwitch = (MicroProfileSCSwitch*) pEvent->MofData;
            if ((pCSwitch->NewThreadId != 0) || (pCSwitch->OldThreadId != 0))
            {
                MicroProfileContextSwitch Switch;
                Switch.nThreadOut = pCSwitch->OldThreadId;
                Switch.nThreadIn = pCSwitch->NewThreadId;
                Switch.nCpu = pEvent->BufferContext.ProcessorNumber;
                Switch.nTicks = pEvent->Header.TimeStamp.QuadPart;
                MicroProfileContextSwitchPut(&Switch);
            }
        }
    }
}

ULONG WINAPI MicroProfileBufferCallback(PEVENT_TRACE_LOGFILE Buffer)
{
    return (S.bContextSwitchStop || !S.bContextSwitchRunning) ? FALSE : TRUE;
}


struct MicroProfileKernelTraceProperties : public EVENT_TRACE_PROPERTIES
{
    char dummy[sizeof(KERNEL_LOGGER_NAME)];
};

void MicroProfileContextSwitchShutdownTrace()
{
    TRACEHANDLE SessionHandle = 0;
    MicroProfileKernelTraceProperties sessionProperties;

    ZeroMemory(&sessionProperties, sizeof(sessionProperties));
    sessionProperties.Wnode.BufferSize = sizeof(sessionProperties);
    sessionProperties.Wnode.Flags = WNODE_FLAG_TRACED_GUID;
    sessionProperties.Wnode.ClientContext = 1; //QPC clock resolution
    sessionProperties.Wnode.Guid = SystemTraceControlGuid;
    sessionProperties.BufferSize = 1;
    sessionProperties.NumberOfBuffers = 128;
    sessionProperties.EnableFlags = EVENT_TRACE_FLAG_CSWITCH;
    sessionProperties.LogFileMode = EVENT_TRACE_REAL_TIME_MODE;
    sessionProperties.MaximumFileSize = 0;
    sessionProperties.LoggerNameOffset = sizeof(EVENT_TRACE_PROPERTIES);
    sessionProperties.LogFileNameOffset = 0;

    EVENT_TRACE_LOGFILE log;
    ZeroMemory(&log, sizeof(log));
    log.LoggerName = KERNEL_LOGGER_NAME;
    log.ProcessTraceMode = 0;
    TRACEHANDLE hLog = OpenTrace(&log);
    if (hLog)
    {
        ControlTrace(SessionHandle, KERNEL_LOGGER_NAME, &sessionProperties, EVENT_TRACE_CONTROL_STOP);
    }
    CloseTrace(hLog);


}

void* MicroProfileTraceThread(void* unused)
{

    MicroProfileContextSwitchShutdownTrace();
    ULONG status = ERROR_SUCCESS;
    TRACEHANDLE SessionHandle = 0;
    MicroProfileKernelTraceProperties sessionProperties;

    ZeroMemory(&sessionProperties, sizeof(sessionProperties));
    sessionProperties.Wnode.BufferSize = sizeof(sessionProperties);
    sessionProperties.Wnode.Flags = WNODE_FLAG_TRACED_GUID;
    sessionProperties.Wnode.ClientContext = 1; //QPC clock resolution
    sessionProperties.Wnode.Guid = SystemTraceControlGuid;
    sessionProperties.BufferSize = 1;
    sessionProperties.NumberOfBuffers = 128;
    sessionProperties.EnableFlags = EVENT_TRACE_FLAG_CSWITCH|EVENT_TRACE_FLAG_PROCESS;
    sessionProperties.LogFileMode = EVENT_TRACE_REAL_TIME_MODE;
    sessionProperties.MaximumFileSize = 0;
    sessionProperties.LoggerNameOffset = sizeof(EVENT_TRACE_PROPERTIES);
    sessionProperties.LogFileNameOffset = 0;


    status = StartTrace((PTRACEHANDLE) &SessionHandle, KERNEL_LOGGER_NAME, &sessionProperties);

    if (ERROR_SUCCESS != status)
    {
        S.bContextSwitchRunning = false;
        return 0;
    }

    EVENT_TRACE_LOGFILE log;
    ZeroMemory(&log, sizeof(log));

    log.LoggerName = KERNEL_LOGGER_NAME;
    log.ProcessTraceMode = PROCESS_TRACE_MODE_REAL_TIME | PROCESS_TRACE_MODE_RAW_TIMESTAMP;
    log.EventCallback = MicroProfileContextSwitchCallback;
    log.BufferCallback = MicroProfileBufferCallback;

    TRACEHANDLE hLog = OpenTrace(&log);
    ProcessTrace(&hLog, 1, 0, 0);
    CloseTrace(hLog);
    MicroProfileContextSwitchShutdownTrace();

    S.bContextSwitchRunning = false;
    return 0;
}

bool MicroProfileIsLocalThread(uint32_t nThreadId)
{
    HANDLE h = OpenThread(THREAD_QUERY_LIMITED_INFORMATION, FALSE, nThreadId);
    if(h == NULL)
        return false;
    DWORD hProcess = GetProcessIdOfThread(h);
    CloseHandle(h);
    return GetCurrentProcessId() == hProcess;
}

#elif defined(__APPLE__)
#include <sys/time.h>
void* MicroProfileTraceThread(void* unused)
{
    FILE* pFile = fopen("mypipe", "r");
    if(!pFile)
    {
        printf("CONTEXT SWITCH FAILED TO OPEN FILE: make sure to run dtrace script\n");
        S.bContextSwitchRunning = false;
        return 0;
    }
    printf("STARTING TRACE THREAD\n");
    char* pLine = 0;
    size_t cap = 0;
    size_t len = 0;
    struct timeval tv;

    gettimeofday(&tv, NULL);

    uint64_t nsSinceEpoch = ((uint64_t)(tv.tv_sec) * 1000000 + (uint64_t)(tv.tv_usec)) * 1000;
    uint64_t nTickEpoch = MP_TICK();
    uint32_t nLastThread[MICROPROFILE_MAX_CONTEXT_SWITCH_THREADS] = {0};
    mach_timebase_info_data_t sTimebaseInfo;
    mach_timebase_info(&sTimebaseInfo);
    S.bContextSwitchRunning = true;

    uint64_t nProcessed = 0;
    uint64_t nProcessedLast = 0;
    while((len = getline(&pLine, &cap, pFile))>0 && !S.bContextSwitchStop)
    {
        nProcessed += len;
        if(nProcessed - nProcessedLast > 10<<10)
        {
            nProcessedLast = nProcessed;
            printf("processed %llukb %llukb\n", (nProcessed-nProcessedLast)>>10,nProcessed >>10);
        }

        char* pX = strchr(pLine, 'X');
        if(pX)
        {
            int cpu = atoi(pX+1);
            char* pX2 = strchr(pX + 1, 'X');
            char* pX3 = strchr(pX2 + 1, 'X');
            int thread = atoi(pX2+1);
            char* lala;
            int64_t timestamp = strtoll(pX3 + 1, &lala, 10);
            MicroProfileContextSwitch Switch;

            //convert to ticks.
            uint64_t nDeltaNsSinceEpoch = timestamp - nsSinceEpoch;
            uint64_t nDeltaTickSinceEpoch = sTimebaseInfo.numer * nDeltaNsSinceEpoch / sTimebaseInfo.denom;
            uint64_t nTicks = nDeltaTickSinceEpoch + nTickEpoch;
            if(cpu < MICROPROFILE_MAX_CONTEXT_SWITCH_THREADS)
            {
                Switch.nThreadOut = nLastThread[cpu];
                Switch.nThreadIn = thread;
                nLastThread[cpu] = thread;
                Switch.nCpu = cpu;
                Switch.nTicks = nTicks;
                MicroProfileContextSwitchPut(&Switch);
            }
        }
    }
    printf("EXITING TRACE THREAD\n");
    S.bContextSwitchRunning = false;
    return 0;
}

bool MicroProfileIsLocalThread(uint32_t nThreadId)
{
    return false;
}

#endif
#else

bool MicroProfileIsLocalThread(uint32_t nThreadId){return false;}
void MicroProfileStopContextSwitchTrace(){}
void MicroProfileStartContextSwitchTrace(){}

#endif




#if MICROPROFILE_GPU_TIMERS_D3D11
uint32_t MicroProfileGpuInsertTimeStamp()
{
    MicroProfileD3D11Frame& Frame = S.GPU.m_QueryFrames[S.GPU.m_nQueryFrame];
    if(Frame.m_nRateQueryStarted)
    {
        uint32_t nCurrent = (Frame.m_nQueryStart + Frame.m_nQueryCount) % MICROPROFILE_D3D_MAX_QUERIES;
        uint32_t nNext = (nCurrent + 1) % MICROPROFILE_D3D_MAX_QUERIES;
        if(nNext != S.GPU.m_nQueryGet)
        {
            Frame.m_nQueryCount++;
            ID3D11Query* pQuery = (ID3D11Query*)S.GPU.m_pQueries[nCurrent];
            ID3D11DeviceContext* pContext = (ID3D11DeviceContext*)S.GPU.m_pDeviceContext;
            pContext->End(pQuery);
            S.GPU.m_nQueryPut = nNext;
            return nCurrent;
        }
    }
    return (uint32_t)-1;
}

uint64_t MicroProfileGpuGetTimeStamp(uint32_t nIndex)
{
    if(nIndex == (uint32_t)-1)
    {
        return (uint64_t)-1;
    }
    int64_t nResult = S.GPU.m_nQueryResults[nIndex];
    MP_ASSERT(nResult != -1);
    return nResult;
}

bool MicroProfileGpuGetData(void* pQuery, void* pData, uint32_t nDataSize)
{
    HRESULT hr;
    do
    {
        hr = ((ID3D11DeviceContext*)S.GPU.m_pDeviceContext)->GetData((ID3D11Query*)pQuery, pData, nDataSize, 0);
    }while(hr == S_FALSE);
    switch(hr)
    {
        case DXGI_ERROR_DEVICE_REMOVED:
        case DXGI_ERROR_INVALID_CALL:
        case E_INVALIDARG:
            MP_BREAK();
            return false;

    }
    return true;
}

uint64_t MicroProfileTicksPerSecondGpu()
{
    return S.GPU.m_nQueryFrequency;
}

void MicroProfileGpuFlip()
{
    MicroProfileD3D11Frame& CurrentFrame = S.GPU.m_QueryFrames[S.GPU.m_nQueryFrame];
    ID3D11DeviceContext* pContext = (ID3D11DeviceContext*)S.GPU.m_pDeviceContext;
    if(CurrentFrame.m_nRateQueryStarted)
    {
        pContext->End((ID3D11Query*)CurrentFrame.m_pRateQuery);
    }
    uint32_t nNextFrame = (S.GPU.m_nQueryFrame + 1) % MICROPROFILE_GPU_FRAME_DELAY;
    MicroProfileD3D11Frame& OldFrame = S.GPU.m_QueryFrames[nNextFrame];
    if(OldFrame.m_nRateQueryStarted)
    {
        struct RateQueryResult
        {
            uint64_t nFrequency;
            BOOL bDisjoint;
        };
        RateQueryResult Result;
        if(MicroProfileGpuGetData(OldFrame.m_pRateQuery, &Result, sizeof(Result)))
        {
            if(S.GPU.m_nQueryFrequency != (int64_t)Result.nFrequency)
            {
                if(S.GPU.m_nQueryFrequency)
                {
                    OutputDebugString("Query freq changing");
                }
                S.GPU.m_nQueryFrequency = Result.nFrequency;
            }
            uint32_t nStart = OldFrame.m_nQueryStart;
            uint32_t nCount = OldFrame.m_nQueryCount;
            for(uint32_t i = 0; i < nCount; ++i)
            {
                uint32_t nIndex = (i + nStart) % MICROPROFILE_D3D_MAX_QUERIES;



                if(!MicroProfileGpuGetData(S.GPU.m_pQueries[nIndex], &S.GPU.m_nQueryResults[nIndex], sizeof(uint64_t)))
                {
                    S.GPU.m_nQueryResults[nIndex] = -1;
                }
            }
        }
        else
        {
            uint32_t nStart = OldFrame.m_nQueryStart;
            uint32_t nCount = OldFrame.m_nQueryCount;
            for(uint32_t i = 0; i < nCount; ++i)
            {
                uint32_t nIndex = (i + nStart) % MICROPROFILE_D3D_MAX_QUERIES;
                S.GPU.m_nQueryResults[nIndex] = -1;
            }
        }
        S.GPU.m_nQueryGet = (OldFrame.m_nQueryStart + OldFrame.m_nQueryCount) % MICROPROFILE_D3D_MAX_QUERIES;
    }

    S.GPU.m_nQueryFrame = nNextFrame;
    MicroProfileD3D11Frame& NextFrame = S.GPU.m_QueryFrames[nNextFrame];
    pContext->Begin((ID3D11Query*)NextFrame.m_pRateQuery);
    NextFrame.m_nQueryStart = S.GPU.m_nQueryPut;
    NextFrame.m_nQueryCount = 0;

    NextFrame.m_nRateQueryStarted = 1;
}

void MicroProfileGpuInitD3D11(void* pDevice_, void* pDeviceContext_)
{
    ID3D11Device* pDevice = (ID3D11Device*)pDevice_;
    ID3D11DeviceContext* pDeviceContext = (ID3D11DeviceContext*)pDeviceContext_;
    S.GPU.m_pDeviceContext = pDeviceContext_;

    D3D11_QUERY_DESC Desc;
    Desc.MiscFlags = 0;
    Desc.Query = D3D11_QUERY_TIMESTAMP;
    for(uint32_t i = 0; i < MICROPROFILE_D3D_MAX_QUERIES; ++i)
    {
        HRESULT hr = pDevice->CreateQuery(&Desc, (ID3D11Query**)&S.GPU.m_pQueries[i]);
        MP_ASSERT(hr == S_OK);
        S.GPU.m_nQueryResults[i] = -1;
    }
    S.GPU.m_nQueryPut = 0;
    S.GPU.m_nQueryGet = 0;
    S.GPU.m_nQueryFrame = 0;
    S.GPU.m_nQueryFrequency = 0;
    Desc.Query = D3D11_QUERY_TIMESTAMP_DISJOINT;
    for(uint32_t i = 0; i < MICROPROFILE_GPU_FRAME_DELAY; ++i)
    {
        S.GPU.m_QueryFrames[i].m_nQueryStart = 0;
        S.GPU.m_QueryFrames[i].m_nQueryCount = 0;
        S.GPU.m_QueryFrames[i].m_nRateQueryStarted = 0;
        HRESULT hr = pDevice->CreateQuery(&Desc, (ID3D11Query**)&S.GPU.m_QueryFrames[i].m_pRateQuery);
        MP_ASSERT(hr == S_OK);
    }
}


void MicroProfileGpuShutdown()
{
    for(uint32_t i = 0; i < MICROPROFILE_D3D_MAX_QUERIES; ++i)
    {
        ((ID3D11Query*)&S.GPU.m_pQueries[i])->Release();
        S.GPU.m_pQueries[i] = 0;
    }
    for(uint32_t i = 0; i < MICROPROFILE_GPU_FRAME_DELAY; ++i)
    {
        ((ID3D11Query*)S.GPU.m_QueryFrames[i].m_pRateQuery)->Release();
        S.GPU.m_QueryFrames[i].m_pRateQuery = 0;
    }
}

int MicroProfileGetGpuTickReference(int64_t* pOutCPU, int64_t* pOutGpu)
{
    return 0;
}


#elif MICROPROFILE_GPU_TIMERS_GL
void MicroProfileGpuInitGL()
{
    S.GPU.GLTimerPos = 0;
    glGenQueries(MICROPROFILE_GL_MAX_QUERIES, &S.GPU.GLTimers[0]);
}

uint32_t MicroProfileGpuInsertTimeStamp()
{
    uint32_t nIndex = (S.GPU.GLTimerPos+1)%MICROPROFILE_GL_MAX_QUERIES;
    glQueryCounter(S.GPU.GLTimers[nIndex], GL_TIMESTAMP);
    S.GPU.GLTimerPos = nIndex;
    return nIndex;
}
uint64_t MicroProfileGpuGetTimeStamp(uint32_t nKey)
{
    uint64_t result;
    glGetQueryObjectui64v(S.GPU.GLTimers[nKey], GL_QUERY_RESULT, &result);
    return result;
}

uint64_t MicroProfileTicksPerSecondGpu()
{
    return 1000000000ll;
}

int MicroProfileGetGpuTickReference(int64_t* pOutCpu, int64_t* pOutGpu)
{
    int64_t nGpuTimeStamp;
    glGetInteger64v(GL_TIMESTAMP, &nGpuTimeStamp);
    if(nGpuTimeStamp)
    {
        *pOutCpu = MP_TICK();
        *pOutGpu = nGpuTimeStamp;
        #if 0 //debug test if timestamp diverges
        static int64_t nTicksPerSecondCpu = MicroProfileTicksPerSecondCpu();
        static int64_t nTicksPerSecondGpu = MicroProfileTicksPerSecondGpu();
        static int64_t nGpuStart = 0;
        static int64_t nCpuStart = 0;
        if(!nCpuStart)
        {
            nCpuStart = *pOutCpu;
            nGpuStart = *pOutGpu;
        }
        static int nCountDown = 100;
        if(0 == nCountDown--)
        {
            int64_t nCurCpu = *pOutCpu;
            int64_t nCurGpu = *pOutGpu;
            double fDistanceCpu = (nCurCpu - nCpuStart) / (double)nTicksPerSecondCpu;
            double fDistanceGpu = (nCurGpu - nGpuStart) / (double)nTicksPerSecondGpu;

            char buf[254];
            snprintf(buf, sizeof(buf)-1,"Distance %f %f diff %f\n", fDistanceCpu, fDistanceGpu, fDistanceCpu-fDistanceGpu);
            OutputDebugString(buf);
            nCountDown = 100;
        }
        #endif
        return 1;
    }
    return 0;
}


#endif

#undef S

#ifdef _WIN32
#pragma warning(pop)
#endif





#endif
#endif
#ifdef MICROPROFILE_EMBED_HTML
#include "microprofile_html.h"
#endif