# neural networks from scratch with numpy import numpy as np def mean_absolute_error(x, y): return np.mean(np.abs(x - y)) def mean_squared_error(x, y): return np.mean(np.power(x - y, 2)) def cross_entropy_loss(x, y): return -np.log(np.exp(y) / np.sum(np.exp(x))) # preapre inputs and outputs x = np.array([[1, 0]]) y = np.array([[1]]) # we're doing xavier initialisation - see w1 = np.random.randn(2, 3) / np.sqrt(2) w2 = np.random.randn(3, 1) / np.sqrt(3) def single_pass(): # forward pass h = np.matmul(x, w1) h_hat = np.tanh(h) j = np.matmul(h_hat, w2) print("prediction {}".format(j)) # loss calculation loss = cross_entropy_loss(j, y) print("loss {}".format(loss)) # TODO Backward pass. return # initialise layers # self.lin1 = nn.Linear(2, 3) # self.lin2 = nn.Linear(3, 1) # self.loss = nn.MSELoss() # and then # x = self.lin1(x) # x = F.relu(x) # x = self.lin2(x) # x = F.softmax(x) # loss = self.loss(x, y) # TODO Add support for numpy matrices. class Tensor: def __init__(self, value): self.value = value self.grad = 0 # Required for backprop. self._parents = None self._back = None def __repr__(self) -> str: return f"Tensor(value={self.value}, grad={self.grad})" # Save values for the backward pass. def _save(self, *args): self._parents = args def add(self, other): tensor = Tensor(self.value + other.value) tensor._save(self, other) def back(upstream): return upstream * 1, upstream * 1 tensor._back = back return tensor def mul(self, other): tensor = Tensor(self.value * other.value) tensor._save(self, other) def back(upstream): a, b = tensor._parents return upstream * b.value, upstream * a.value tensor._back = back return tensor def expt(self, exponent): tensor = Tensor(self.value ** exponent) tensor._save(self) def back(upstream): a, = tensor._parents return [ upstream * exponent * (a.value ** (exponent - 1)) ] tensor._back = back return tensor def reciprocal(self): tensor = Tensor(1.0 / self.value) tensor._save(self) def back(upstream): a, = tensor._parents return [ -1.0 / (a.value ** 2) ] tensor._back = back return tensor def _backprop(tensor, upstream): # Backprop through the tensor iff it has any parents. if tensor._parents is not None: for node, grad in zip(tensor._parents, tensor._back(upstream)): # Set the node gradient to the computed gradient. node.grad = grad # Iterate through all (possible) parent nodes of this node. node._backprop(grad) def backward(self): # Partial of self with respect to self is ALWAYS 1. self.grad = 1 Tensor._backprop(self, self.grad) def test(): # Forward pass. x, y, z = Tensor(-2), Tensor(5), Tensor(-4) q = x.add(y) h = q.expt(2) w = h.mul(z) print(f"q = {q}, w = {w}") # Backward pass. w.backward() print(f"is: dw = {w.grad}, dz = {z.grad}, dy = {y.grad}, dx = {x.grad}")