Refactor into more traditional project structure
Splits nn.py into pygrad/nn.py and pygrad/tensor.py.
This commit is contained in:
parent
4ee1d39a20
commit
a75365a1ab
146
nn.py
146
nn.py
|
@ -1,146 +0,0 @@
|
|||
# neural networks from scratch with numpy
|
||||
|
||||
import numpy as np
|
||||
|
||||
def mean_absolute_error(x, y):
|
||||
return np.mean(np.abs(x - y))
|
||||
|
||||
def mean_squared_error(x, y):
|
||||
return np.mean(np.power(x - y, 2))
|
||||
|
||||
def cross_entropy_loss(x, y):
|
||||
return -np.log(np.exp(y) / np.sum(np.exp(x)))
|
||||
|
||||
# preapre inputs and outputs
|
||||
x = np.array([[1, 0]])
|
||||
y = np.array([[1]])
|
||||
|
||||
# we're doing xavier initialisation - see <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>
|
||||
w1 = np.random.randn(2, 3) / np.sqrt(2)
|
||||
w2 = np.random.randn(3, 1) / np.sqrt(3)
|
||||
|
||||
def single_pass():
|
||||
# forward pass
|
||||
h = np.matmul(x, w1)
|
||||
h_hat = np.tanh(h)
|
||||
j = np.matmul(h_hat, w2)
|
||||
print("prediction {}".format(j))
|
||||
|
||||
# loss calculation
|
||||
loss = cross_entropy_loss(j, y)
|
||||
print("loss {}".format(loss))
|
||||
|
||||
# TODO Backward pass.
|
||||
return
|
||||
|
||||
# initialise layers
|
||||
# self.lin1 = nn.Linear(2, 3)
|
||||
# self.lin2 = nn.Linear(3, 1)
|
||||
# self.loss = nn.MSELoss()
|
||||
# and then
|
||||
# x = self.lin1(x)
|
||||
# x = F.relu(x)
|
||||
# x = self.lin2(x)
|
||||
# x = F.softmax(x)
|
||||
# loss = self.loss(x, y)
|
||||
|
||||
# TODO Add support for numpy arrays.
|
||||
class Tensor:
|
||||
# TODO Implement 'requires_grad' functionality.
|
||||
def __init__(self, value):
|
||||
self.value = value
|
||||
self.grad = 0
|
||||
# Required for backprop.
|
||||
self._parents = None
|
||||
self._back = None
|
||||
|
||||
# uwu literally the only place where I have type annotations
|
||||
def __repr__(self) -> str:
|
||||
return f"Tensor(value={self.value}, grad={self.grad})"
|
||||
|
||||
# Save values for the backward pass.
|
||||
def _save(self, *args):
|
||||
self._parents = args
|
||||
|
||||
# TODO Maybe refactor the functions system? Maybe something like pytorch/tinygrad?
|
||||
def add(self, other):
|
||||
tensor = Tensor(self.value + other.value)
|
||||
tensor._save(self, other)
|
||||
|
||||
def back(upstream):
|
||||
return upstream * 1, upstream * 1
|
||||
|
||||
tensor._back = back
|
||||
return tensor
|
||||
|
||||
def mul(self, other):
|
||||
tensor = Tensor(self.value * other.value)
|
||||
tensor._save(self, other)
|
||||
|
||||
def back(upstream):
|
||||
a, b = tensor._parents
|
||||
return upstream * b.value, upstream * a.value
|
||||
|
||||
tensor._back = back
|
||||
return tensor
|
||||
|
||||
def expt(self, exponent):
|
||||
tensor = Tensor(self.value ** exponent)
|
||||
tensor._save(self)
|
||||
|
||||
def back(upstream):
|
||||
a, = tensor._parents
|
||||
return [ upstream * exponent * (a.value ** (exponent - 1)) ]
|
||||
|
||||
tensor._back = back
|
||||
return tensor
|
||||
|
||||
def reciprocal(self):
|
||||
tensor = Tensor(1.0 / self.value)
|
||||
tensor._save(self)
|
||||
|
||||
def back(upstream):
|
||||
a, = tensor._parents
|
||||
return [ -1.0 / (a.value ** 2) ]
|
||||
|
||||
tensor._back = back
|
||||
return tensor
|
||||
|
||||
def exp(self):
|
||||
tensor = Tensor(np.exp(self.value))
|
||||
tensor._save(self)
|
||||
|
||||
def back(upstream):
|
||||
a, = tensor._parents
|
||||
return [ np.exp(a.value) ]
|
||||
|
||||
tensor._back = back
|
||||
return tensor
|
||||
|
||||
# TODO Compute gradients only for tensors that need it.
|
||||
def _backprop(tensor, upstream):
|
||||
# Backprop through the tensor iff it has any parents.
|
||||
if tensor._parents is not None:
|
||||
for node, grad in zip(tensor._parents, tensor._back(upstream)):
|
||||
# Set the node gradient to the computed gradient.
|
||||
node.grad = grad
|
||||
# Iterate through all (possible) parent nodes of this node.
|
||||
node._backprop(grad)
|
||||
|
||||
def backward(self):
|
||||
# Partial of self with respect to self is ALWAYS 1.
|
||||
self.grad = 1
|
||||
Tensor._backprop(self, self.grad)
|
||||
|
||||
# Small test to see if autograd works.
|
||||
def test():
|
||||
# Forward pass.
|
||||
x, y, z = Tensor(-2), Tensor(5), Tensor(-4)
|
||||
q = x.add(y)
|
||||
h = q.expt(2)
|
||||
w = h.mul(z)
|
||||
print(f"q = {q}, w = {w}")
|
||||
|
||||
# Backward pass.
|
||||
w.backward()
|
||||
print(f"is: dw = {w.grad}, dz = {z.grad}, dy = {y.grad}, dx = {x.grad}")
|
61
pygrad/nn.py
Normal file
61
pygrad/nn.py
Normal file
|
@ -0,0 +1,61 @@
|
|||
# Neural networks from scratch with numpy.
|
||||
|
||||
import numpy as np
|
||||
import pygrad.tensor as tensor
|
||||
|
||||
def mean_absolute_error(x, y):
|
||||
return np.mean(np.abs(x - y))
|
||||
|
||||
def mean_squared_error(x, y):
|
||||
return np.mean(np.power(x - y, 2))
|
||||
|
||||
def cross_entropy_loss(x, y):
|
||||
return -np.log(np.exp(y) / np.sum(np.exp(x)))
|
||||
|
||||
# prepare inputs and outputs
|
||||
x = np.array([[1, 0]])
|
||||
y = np.array([[1]])
|
||||
|
||||
# we're doing xavier initialisation - see <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>
|
||||
w1 = np.random.randn(2, 3) / np.sqrt(2)
|
||||
w2 = np.random.randn(3, 1) / np.sqrt(3)
|
||||
|
||||
def single_pass():
|
||||
# forward pass
|
||||
h = np.matmul(x, w1)
|
||||
h_hat = np.tanh(h)
|
||||
j = np.matmul(h_hat, w2)
|
||||
print("prediction {}".format(j))
|
||||
|
||||
# loss calculation
|
||||
loss = cross_entropy_loss(j, y)
|
||||
print("loss {}".format(loss))
|
||||
|
||||
# TODO Backward pass.
|
||||
return
|
||||
|
||||
# initialise layers
|
||||
# self.lin1 = nn.Linear(2, 3)
|
||||
# self.lin2 = nn.Linear(3, 1)
|
||||
# self.loss = nn.MSELoss()
|
||||
# and then
|
||||
# x = self.lin1(x)
|
||||
# x = F.relu(x)
|
||||
# x = self.lin2(x)
|
||||
# x = F.softmax(x)
|
||||
# loss = self.loss(x, y)
|
||||
|
||||
# Small test to see if autograd works.
|
||||
def test():
|
||||
# Input tensors.
|
||||
x, y, z = tensor.Tensor(-2), tensor.Tensor(5), tensor.Tensor(-4)
|
||||
|
||||
# Forward pass.
|
||||
q = x.add(y)
|
||||
h = q.expt(2)
|
||||
w = h.mul(z)
|
||||
print(f"q = {q}, w = {w}")
|
||||
|
||||
# Backward pass.
|
||||
w.backward()
|
||||
print(f"is: dw = {w.grad}, dz = {z.grad}, dy = {y.grad}, dx = {x.grad}")
|
93
pygrad/tensor.py
Normal file
93
pygrad/tensor.py
Normal file
|
@ -0,0 +1,93 @@
|
|||
import numpy as np
|
||||
|
||||
class Tensor:
|
||||
# TODO Implement 'requires_grad' functionality.
|
||||
def __init__(self, value):
|
||||
if not isinstance(value, np.ndarray):
|
||||
print(f"{type(value)} is not compatible with {np.ndarray}")
|
||||
exit(-1)
|
||||
|
||||
self.value = value
|
||||
self.grad = np.zeros_like(value)
|
||||
# Required for backprop.
|
||||
self._parents = None
|
||||
self._back = None
|
||||
|
||||
# uwu literally the only place where I have type annotations
|
||||
def __repr__(self) -> str:
|
||||
return f"Tensor(value={self.value}, grad={self.grad})"
|
||||
|
||||
# Save values for the backward pass.
|
||||
def _save(self, *args):
|
||||
self._parents = args
|
||||
|
||||
# TODO Maybe refactor the functions system? Maybe something like pytorch/tinygrad?
|
||||
def add(self, other):
|
||||
tensor = Tensor(np.add(self.value, other.value))
|
||||
tensor._save(self, other)
|
||||
|
||||
def back(upstream):
|
||||
return np.dot(np.ones_like(self.value), upstream), np.dot(np.ones_like(self.value), upstream)
|
||||
|
||||
tensor._back = back
|
||||
return tensor
|
||||
|
||||
def mul(self, other):
|
||||
tensor = Tensor(np.dot(self.value, other.value))
|
||||
tensor._save(self, other)
|
||||
|
||||
def back(upstream):
|
||||
a, b = tensor._parents
|
||||
return np.dot(b.value, upstream), np.dot(a.value.T, upstream)
|
||||
|
||||
tensor._back = back
|
||||
return tensor
|
||||
|
||||
def expt(self, exponent):
|
||||
tensor = Tensor(self.value ** exponent)
|
||||
tensor._save(self)
|
||||
|
||||
def back(upstream):
|
||||
a, = tensor._parents
|
||||
return [np.dot(exponent * (a.value ** (exponent - 1)), upstream)]
|
||||
|
||||
tensor._back = back
|
||||
return tensor
|
||||
|
||||
def reciprocal(self):
|
||||
tensor = Tensor(1.0 / self.value)
|
||||
tensor._save(self)
|
||||
|
||||
def back(upstream):
|
||||
a, = tensor._parents
|
||||
return [np.dot(-1.0 / (a.value ** 2), upstream)]
|
||||
|
||||
tensor._back = back
|
||||
return tensor
|
||||
|
||||
def exp(self):
|
||||
tensor = Tensor(np.exp(self.value))
|
||||
tensor._save(self)
|
||||
|
||||
def back(upstream):
|
||||
a, = tensor._parents
|
||||
return [np.dot(np.exp(a.value), upstream)]
|
||||
|
||||
tensor._back = back
|
||||
return tensor
|
||||
|
||||
# TODO Compute gradients only for tensors that need it.
|
||||
def _backprop(self, upstream):
|
||||
print(upstream)
|
||||
# Backprop through the tensor iff it has any parents.
|
||||
if self._parents is not None:
|
||||
for node, grad in zip(self._parents, self._back(upstream)):
|
||||
# Set the node gradient to the computed gradient.
|
||||
node.grad = grad
|
||||
# Iterate through all (possible) parent nodes of this node.
|
||||
node._backprop(grad)
|
||||
|
||||
def backward(self):
|
||||
# Partial of self with respect to self is ALWAYS 1.
|
||||
self.grad = np.ones_like(self.value)
|
||||
self._backprop(self.grad)
|
Loading…
Reference in a new issue