Make single pass use tensors instead of ndarrays

This commit is contained in:
Aodhnait Étaín 2020-11-16 11:43:23 +00:00
parent b0bb7b523d
commit 45168730e8

View file

@ -1,38 +1,43 @@
# Neural networks from scratch with numpy.
import numpy as np
import pygrad.tensor as tensor
from pygrad.tensor import tensor, Tensor
def mean_absolute_error(x, y):
return np.mean(np.abs(x - y))
def mean_squared_error(x, y):
return np.mean(np.power(x - y, 2))
def mean_squared_error(x: Tensor, y: Tensor):
return x.sub(y).expt(2).div(tensor([[2.0]]))
def cross_entropy_loss(x, y):
return -np.log(np.exp(y) / np.sum(np.exp(x)))
def cross_entropy_loss(x: Tensor, y: Tensor):
return y.exp().div(np.sum(x.exp())).log().neg()
# prepare inputs and outputs
x = np.array([[1, 0]])
y = np.array([[1]])
x = tensor(np.array([[1, 0]]))
y = tensor(np.array([[1]]))
# we're doing xavier initialisation - see <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>
w1 = np.random.randn(2, 3) / np.sqrt(2)
w2 = np.random.randn(3, 1) / np.sqrt(3)
w1 = tensor(np.random.randn(2, 3) / np.sqrt(2))
w2 = tensor(np.random.randn(3, 1) / np.sqrt(3))
def single_pass():
global w1, w2
# forward pass
h = np.matmul(x, w1)
h_hat = np.tanh(h)
j = np.matmul(h_hat, w2)
print("prediction {}".format(j))
h = x.mul(w1)
h_hat = h.tanh()
j = h_hat.mul(w2)
print(f"prediction {j}")
# loss calculation
loss = cross_entropy_loss(j, y)
print("loss {}".format(loss))
loss = mean_squared_error(j, y)
print(f"loss {loss}")
# TODO Backward pass.
return
loss.backward()
print(w1.grad, w2.grad)
w1.value -= 0.1 * w1.grad
w2.value -= 0.1 * w2.grad
# initialise layers
# self.lin1 = nn.Linear(2, 3)