mirror of https://dicksdeathabove.xyz/~mia/psh-prng synced 2024-11-16 10:42:52 +00:00

LCG seems to be fully working; if /dev/urandom is missing, generate a onetime seed and save it for later

This commit is contained in:
Mia 2021-10-30 14:22:54 -04:00
parent fec52b177f
commit 109f954026

60
ran Normal file → Executable file
View file

@ -22,33 +22,55 @@
: $((n+=${#PWD})); : $((n+=${#0}))
seed="${n:-100}"
}
[ "$1" ] && seed="$1" # allow a seed to be set via $1
# $seed should now contain a number
for i in 1 2 3 4 5; do # 5 times
[ ! "$((seed*seed))" -gt "$seed" ] && break # break if we have reached a max length num
seed=$((seed*seed))
seed="${seed#?}"; seed="${seed%?}" # use the middle-square method to generate a new seed
# the idea here is the $seed should be /slightly/ random or at least dicated by the contents of the current systen
# now we must remove all possible leading 0's
until [ ${seed#0} = $seed ]; do
seed=${seed#0}
done
# echo "being LCG"
# LCG imp follows
# generate a modulus (m) from the length of $seed and then detemine if its a prime
m="${#seed}"; [ "$((m%2))" -eq 0 -o "$((m%3))" -eq 0 ] || : $((m+=1)) # if prime
m="$(( ${#seed} * 10))"; [ "$((m%2))" -eq 0 -o "$((m%3))" -eq 0 -a "$m" -gt 2 -a "$m" -gt 3 ] || : $((m+=1)) # if prime
# ^ if not a multiple of 2 or 3 expect the number to be prime and increase it by 1
p=0 # $p is the next prime and can be determined using a while loop that adds 1 to it until it becomes a prime
if [ "$((m%2))" -eq 0 ]; then # now determine the prime factors of $m
#echo "determine modulus and its factors"
if [ $((m%2)) -eq 0 ]; then # now determine the prime factors of $m
f=$((m/2)) # next prime is 3; 5
p=3 # we know the next prime
until [ ! "$((f%2))" -eq 0 -a ! "$((f%3))" -eq 0 ]; do
p=2
until [ $((f % 2)) -gt 0 -a $(( f % 3)) -gt 0 ]; do
[ $((f%p)) -eq 0 ] && {
f=$((f/p))
: $((p+=1)); until [ ! "$((p%2))" -eq 0 -a ! "$((p%3))" -eq 0 ]; do
: $((P+=1))
done
done
elif [ "$((m%3))" -eq 0 ]; then
f=$((m/3)) # next prime is 5; 7
p=5
until [ ! "$((f%2))" -eq 0 -a ! "$((f%3))" -eq 0 ]; do
f=$((f/p))
: $((p+=1)); until [ ! "$((p%2))" -eq 0 -a ! "$((p%3))" -eq 0 ]; do
} || {
: $((p+=1))
until [ $((p%2)) -gt 0 -a $((p%3)) -gt 0 ] || [ "$p" -eq 2 -o "$p" -eq 3 ]; do
: $((p+=1))
done
}
done
elif [ $((m%3)) -eq 0 ]; then
f=$((m/3)) # next prime is 5; 7
p=3
until [ $((f % 2)) -gt 0 -a $((f % 3)) -gt 0 ]; do
[ $((f%p)) -eq 0 ] && {
f=$((f/p))
} || {
: $((p+=1)); until [ $((p%2)) -gt 0 -a $((p%3)) -gt 0 ] || [ "$p" -eq 2 -o "$p" -eq 3 ]; do
: $((p+=1))
done
}
done # until $f is prime do the above
fi # $f is the prime factor of $m
fi # $f is the prime factor of $m; $f*2 = $m
if [ "$seed" -gt 75 ]; then
a="$((seed-75))" # here the multiplier (a) is seed (z) - 75 # the 75 here is taken from the ZX81's multiplier (a) from its own LCG
elif [ "$seed" -gt 6 ]; then # the 6 here for fallback is literally random
a="$((seed-6))"
fi
until [ "$(( (a-1)%f ))" -eq 0 ]; do # the multiplier (a) -1 MUST be a multiple of $f
: $((a+=1)) # add to a until a-1 is a multiple of $f
done
# increment (c) and the modulus (m) must be co-prime; and two random primes should be co-prime therefore set $c to $p; see above
# the final digit used by LCG will be the seed (z) # z & c will not be defined to save on memory
seed=$(( ((a*seed)+p)%m )) # finally calculate a need seed via the formula: (a*z + c)%m and return it
echo "$seed"