JSON-Lang/ir.py

393 lines
11 KiB
Python

from emis_funky_funktions import *
from typing import Collection, Mapping, Sequence, Tuple, TypeAlias
from functools import reduce
from match_tree import MatchTree, MatchException, StructurePath, LeafNode, merge_all_trees, IntNode, EMPTY_STRUCT_PATH, FAIL_NODE
from patterns import Pattern
import types_
Expression: TypeAlias = 'MonoFunc | Application | Int | Variable | Builtin | LetBinding | ReplHole | Switch'
Value: TypeAlias = 'MonoFunc | Int | Builtin | ReplHole'
@dataclass(frozen=True)
class ReplHole:
typ_bindings: types_.Context
val_bindings: Sequence[Tuple[str, Expression]] = tuple()
def subst(self, expression: Expression, variable: str) -> Expression:
return ReplHole(self.typ_bindings, (*self.val_bindings, (variable, expression)))
def is_value(self) -> bool:
return True
def step(self) -> Option[Expression]:
return None
def __repr__(self) -> str:
return "[]"
def codegen(self) -> str:
return '[]'
def render(self) -> str:
return '\n'.join(
f'const {var_name} = ({var_expr.codegen()});'
for (var_name, var_expr) in self.val_bindings
if var_name not in types_.BUILTINS_CONTEXT
)
@dataclass(frozen=True)
class Builtin:
name: str
f: Callable[[Expression], Option[Expression]]
js: str
def subst(self, expression: Expression, variable: str) -> Expression:
return self
def is_value(self) -> bool:
return True
def step(self) -> Option[Expression]:
return None
def try_apply(self, v: Expression) -> Option[Expression]:
return self.f(v)
def __repr__(self) -> str:
return "'" + repr(self.name)[1:-1] + "'"
def codegen(self) -> str:
return self.js
@cur2
@staticmethod
def _PLUS_CONST(i: int, e: Expression) -> Option[Expression]:
match e:
case Int(v):
return Some(Int(i + v))
return None
@staticmethod
def _PLUS(e: Expression) -> Option[Expression]:
match e:
case Int(v):
return Some(Builtin(f'+{v}', Builtin._PLUS_CONST(v), f'(x => x + {v})'))
return None
@staticmethod
def PLUS() -> 'Builtin':
return Builtin('+', Builtin._PLUS, '(x => y => x + y)')
@staticmethod
def S() -> 'Builtin':
return Builtin('S', Builtin._PLUS_CONST(1), '(x => x + 1)')
BUILTIN_SUBSTITUTIONS: Sequence[Tuple[str, Expression]] = (
('+', Builtin.PLUS()),
('S', Builtin.S()),
)
@dataclass(frozen=True)
class MonoFunc:
arg: str
body: Expression
def subst(self, expression: Expression, variable: str) -> Expression:
if variable == self.arg:
return self
else:
return MonoFunc(self.arg, self.body.subst(expression, variable))
def is_value(self) -> bool:
return True
def step(self) -> Option[Expression]:
return None
@staticmethod
def from_match_function(forms: 'Sequence[Tuple[Pattern, Expression]]') -> Result[Expression, MatchException]:
# In certain cases, starting a function with a full match tree may be unnecessary.
# Specifically, if there exists only one possible branch and that branch binds only
# one value and that value is equal to the whole entire input, rather than assigning
# that input to a new variable, we may simply use argument variable instead.
match forms:
case [(patt, body)]: # A single possible branch
match patt.bindings():
case []: # Binds nothing
return Ok(MonoFunc('_', body))
case [(var, [])]: # Binds a single variable to the entire input
return Ok(MonoFunc(var, body))
# If those special cases fail, we eliminate the pattern matching to produce a
# single body:
match_trees = tuple( # Construct a match tree for each possible branch
pattern.match_tree(
EMPTY_STRUCT_PATH,
LeafNode.from_value(bindings_to_lets(pattern.bindings(), Variable('$'), body))
)
for (pattern, body) in forms
)
unified_match_tree = merge_all_trees(match_trees) # Unify all the trees
compiled_tree = compile_tree(unified_match_tree, Variable('$')) # Turn each tree into IR
return compiled_tree <= p(MonoFunc, '$')
def try_apply(self, v: Expression) -> Option[Expression]:
return Some(self.body.subst(v, self.arg))
def codegen(self) -> str:
return f'({self.arg}=>{self.body.codegen()})'
def codegen_named(self, name) -> str:
return f'(function {name}({self.arg}){{return {self.body.codegen()}}})'
def __repr__(self) -> str:
return f'{{{repr(self.arg)}: {repr(self.body)}}}'
@dataclass
class LetBinding:
lhs: str
rhs: Expression
body: Expression
def subst(self, expression: Expression, variable: str) -> Expression:
if self.lhs == variable:
return self
else:
return LetBinding(
self.lhs,
self.rhs.subst(expression, variable),
self.body.subst(expression, variable)
)
def is_value(self) -> bool:
return False
def step(self) -> Option[Expression]:
if self.rhs.is_value():
return Some(self.body.subst(
self.rhs.subst(
LetBinding(self.lhs, self.rhs, Variable(self.lhs)),
self.lhs
),
self.lhs
))
else:
return map_opt(lambda rhs_step:
LetBinding(self.lhs, rhs_step, self.body),
self.rhs.step()
)
def __repr__(self) -> str:
return f'( "{self.lhs}", {repr(self.rhs)}, {repr(self.body)} )'
def codegen(self) -> str:
rhs_cg = self.rhs.codegen_named(self.lhs) if isinstance(self.rhs, MonoFunc) else self.rhs.codegen()
if self.body == Variable(self.lhs):
return rhs_cg
else:
return f'({self.lhs}=>{self.body.codegen()})({rhs_cg})'
@dataclass
class Application:
first: Expression
arg: Expression
def subst(self, expression: Expression, variable: str) -> Expression:
return Application(
self.first.subst(expression, variable),
self.arg.subst(expression, variable)
)
def is_value(self) -> bool:
return False
def step(self) -> Option[Expression]:
match self.first.step():
case Some(first_stepped):
return Some(Application(first_stepped, self.arg))
case None:
match self.arg.step():
case Some(arg_stepped):
return Some(Application(self.first, arg_stepped))
case None:
assert isinstance(self.first, MonoFunc) or isinstance(self.first, Builtin), "Type checking failed to produce valid IR, or preservation of types failed"
return self.first.try_apply(self.arg)
raise Exception('Unreachable')
def __repr__(self) -> str:
return f'[ {repr(self.first)}, {repr(self.arg)} ]'
def codegen(self) -> str:
if isinstance(self.first, MonoFunc | Builtin) and self.arg.is_value():
return unwrap_opt(self.first.try_apply(self.arg)).codegen()
else:
match self.first:
case Application(Builtin('+', _, _), addend1):
return f'({addend1.codegen()} + {self.arg.codegen()})'
case Builtin('S', _, _):
return f'(1+{self.arg.codegen()})'
case Builtin('pred', _, _):
return f'({self.arg.codegen()}-1)'
return f'({self.first.codegen()})({self.arg.codegen()})'
@dataclass
class Int:
value: int
def subst(self, expression: Expression, variable: str) -> Expression:
return self
def is_value(self) -> bool:
return True
def step(self) -> Option[Expression]:
return None
def __repr__(self) -> str:
return str(self.value)
def codegen(self) -> str:
return str(self.value)
@dataclass
class Variable:
name: str
def subst(self, expression: Expression, variable: str) -> Expression:
if variable == self.name:
return expression
else:
return self
def is_value(self) -> bool:
return False
def step(self) -> Option[Expression]:
match self.name:
case '+':
return Some(Builtin.PLUS())
case 'S':
return Some(Builtin.S())
return None
def __repr__(self) -> str:
return '"' + repr(self.name)[1:-1] + '"'
def codegen(self) -> str:
return self.name
@dataclass
class Switch:
branches: Mapping[int, Expression]
fallback: Expression
switching_on: Expression
def subst(self, expression: Expression, variable: str) -> Expression:
return Switch(
{i: e.subst(expression, variable) for i, e in self.branches.items()},
self.fallback.subst(expression, variable),
self.switching_on.subst(expression, variable))
def is_value(self) -> bool:
return False
def step(self) -> Option[Expression]:
match self.switching_on.step():
case Some(switch_expr_stepped):
return Some(Switch(self.branches, self.fallback, switch_expr_stepped))
case None:
match self.switching_on:
case Int(n):
if n in self.branches:
return Some(self.branches[n])
else:
return Some(self.fallback)
raise Exception('Attempted to switch on non-integer value')
raise Exception('Unreachable')
def __repr__(self) -> str:
return '{ ' + ', '.join(f'{n}: ' + repr(e) for (n, e) in self.branches.items()) + f', _: {repr(self.fallback)}' + ' }'
def codegen(self) -> str:
switching_on_code = self.switching_on.codegen()
return ':'.join(
f'{switching_on_code}=={val}?({branch.codegen()})'
for val, branch in self.branches.items()
) + f':{self.fallback.codegen()}'
def compile_tree(tree: 'MatchTree[Expression]', match_against: Expression) -> Result[Expression, MatchException]:
match tree:
case LeafNode([match]):
return Ok(match)
case LeafNode([]):
return Err(MatchException.Incomplete)
case LeafNode([a, b, *rest]):
return Err(MatchException.Ambiguous)
case IntNode(location, specific_trees, fallback_tree):
access_location = location_to_ir(location)(match_against)
match sequence(tuple(compile_tree(tree, match_against) for tree in specific_trees.values())):
case Err(e):
return Err(e)
case Ok(exprs):
match compile_tree(fallback_tree, match_against):
case Err(e):
return Err(e)
case Ok(fallback):
return Ok(Switch(dict(zip(specific_trees.keys(), exprs)), fallback, match_against))
raise Exception('Unreachable')
def location_to_ir(location: StructurePath) -> Callable[[Expression], Expression]:
def access_location(part: int) -> Callable[[Expression], Expression]:
def remove(expr: Expression) -> Expression:
return Application(Builtin(f'pred', Builtin._PLUS_CONST(-1), f'$=>$-1'), expr)
def access_location_prime(expr: Expression) -> Expression:
if part < 1:
return remove(expr)
else:
raise AssertionError('A!')
return access_location_prime
match location:
case []:
return lambda o: o
case [part, *rest_location]:
return c(location_to_ir(StructurePath(rest_location)), access_location(part))
raise Exception('Unreachable')
def bindings_to_lets(bindings: Collection[Tuple[str, StructurePath]], deconstructing_term: Expression, body_expr: Expression) -> Expression:
match bindings:
case []:
return body_expr
case [(binding_name, location), *rest]:
return LetBinding(binding_name, location_to_ir(location)(deconstructing_term), bindings_to_lets(rest, deconstructing_term, body_expr))
raise Exception('Unreachable')
def subst_all(bindings: Sequence[Tuple[str, Expression]], body: Expression) -> Expression:
match bindings:
case []:
return body
case [(var, replacement), *rest]:
return subst_all(rest, body.subst(replacement, var))
raise Exception('Unreachable')
def count_uses(variable: str, expression: Expression) -> int:
match expression:
case MonoFunc(arg, body):
return 0 if arg == variable else count_uses(variable, body)
case Application(first, arg):
return count_uses(variable, first) + count_uses(variable, arg)
case Int(_):
return 0
case Variable(name):
return 1 if name == variable else 0
case Builtin(_, _):
return 0
case LetBinding(lhs, rhs, body):
return count_uses(variable, rhs) + count_uses(variable, body)
case ReplHole(_, _):
return 0
case Switch(branches, fallback, switching_on):
return (
count_uses(variable, switching_on) +
count_uses(variable, fallback) +
sum(count_uses(variable, branch) for branch in branches.values()))